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Abstract

Background: Monitoring the emotional states of psychiatric patients has always been challenging due to the non-continuous
nature of clinical assessments, the effect of being in a healthcare environment, and the inherent subjectivity of existing evaluation
instruments. However, mental states in psychiatric disorders exhibit significant variability over time, making real-time
monitoring crucial for preventing risk situations and ensuring appropriate treatment.

Objective: Our objective is to leverage new technologies and deep learning techniques to enable a more objective, real-time
monitoring of patients. This will be achieved by passively monitoring variables like step count, patient location, and sleep
patterns using mobile devices. We aim to predict patient self-reports and detect sudden variations in their emotional valence,
identifying situations that may require clinical intervention.

Methods: Data for this project are registered with the Evidence-Based Behavior (eB2) MindCare mobile application, where both
passively and self-reported variables are recorded from patients. We utilize daily summaries of these variables. We implement
imputation methods based on hidden Markov model (HMM) to address missing data and transformer deep neural networks for
time-series forecasting. Finally, classification algorithms are applied to predict several variables, including emotional state and
responses to the Patient Health Questionnaire (PHQ-9).

Results: Through real-time patient monitoring, we demonstrated the ability to accurately predict their emotional state, obtaining
an accuracy of 0.93 and 0.98 of receiver operating characteristic (ROC) area under the curve (AUC) for emotional valence
classification with an XGBoost classifier and anticipate emotional state changes (ROC AUC of 0.87 for change detection one
day in advance). Additionally, we showed the feasibility of forecasting general responses to the PHQ-9 questionnaire. Especially
good results were obtained for the score prediction of certain questions. For instance, in the case of question 9, related to suicidal
ideation, we obtained an accuracy of 0.9 and ROC AUC of 0.768 in predicting the following day’s response.
Secondly, from a methodological perspective, we illustrate the enhanced stability of multivariate time-series forecasting when
combining HMM pre-processing with a transformer model, as opposed to other time-series forecasting methods, such as the
Recurrent Neural Network or the Long Short- Term Memory cells. Concretely, we exploit the capabilities offered by attention
mechanisms to capture longer time dependencies.

Conclusions: From a methodological perspective, we found out that the stability of multivariate time-series forecasting
improved when combining hidden Markov model pre-processing with a transformer model, as opposed to other time-series
forecasting methods (RNN, LSTM...), leveraging the attention mechanisms to capture longer time dependencies and gain
interpretability. We show the potential to assess the emotional state of a patient and the scores of psychiatric questionnaires from
passive variables in advance. This offers a real real-time monitoring of patients and hence better risk detection and treatment
adjustment.

(JMIR Preprints 05/07/2024:63962)
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Emotion Forecasting: A Transformer-Based Approach

Abstract  

Background:
Monitoring the emotional states of psychiatric patients has always been challenging due to the
non-continuous nature of clinical assessments, the effect of being in a healthcare environment,
and the inherent  subjectivity of  existing evaluation instruments.  However,  mental  states  in
psychiatric  disorders  exhibit  significant  variability  over  time,  making  real-time  monitoring
crucial for preventing risk situations and ensuring appropriate treatment.
Objective:
Our objective is to leverage new technologies and deep learning techniques to enable a more
objective,  real-time  monitoring  of  patients.  This  will  be  achieved  by  passively  monitoring
variables like step count, patient location, and sleep patterns using mobile devices. We aim to
predict patient self-reports and detect sudden variations in their emotional valence, identifying
situations that may require clinical intervention.
Methods:
Data  for  this  project  were  collected  using  the  Evidence-Based  Behavior  (eB2)  application,
which records both passive and self-reported variables daily. Passive data refer to behavioral
information  gathered  via  the  eB2  app  through  sensors  embedded  in  mobile  devices  and
wearables. These data were obtained from various studies in which eB2 has participated in
collaboration with  hospitals  and  clinics.  We  use  hidden Markov models  (HMM) to  address
missing  data  and  transformer  deep  neural  networks  for  time-series  forecasting.  Finally,
classification algorithms are applied to predict several variables, including emotional state and
responses to the Patient Health Questionnaire (PHQ-9).
Results: 
Through  real-time  patient  monitoring,  we  demonstrated  the  ability  to  accurately  predict
patients' emotional states and anticipate changes over time. Specifically, our approach achieved
high accuracy (0.93) and a receiver operating characteristic (ROC) area under the curve (AUC)
of 0.98 for emotional valence classification. For predicting emotional state changes one day in
advance,  we obtained a  ROC AUC of  0.87.  Furthermore,  we demonstrated the feasibility  of
forecasting responses to the PHQ-9 questionnaire,  with particularly strong performance for
certain questions. For example, in question 9, related to suicidal ideation, our model achieved
an accuracy of 0.9 and a ROC AUC of 0.77 for predicting the next day’s response.
Second,  we  illustrate  the  enhanced  stability  of  multivariate  time-series  forecasting  when
combining HMM pre-processing with a transformer model,  as opposed to other time-series
forecasting methods, such as the Recurrent Neural Network or the Long Short-Term Memory
cells. Concretely, we exploit the capabilities offered by attention mechanisms to capture longer
time dependencies.
Conclusions:
We  found  out  that  the  stability  of  multivariate  time-series  forecasting  improved  when
combining hidden Markov model  pre-processing  with  a  transformer  model,  as  opposed  to
other time-series forecasting methods (RNN, LSTM, etc.), leveraging the attention mechanisms
to capture longer time dependencies and gain interpretability. We show the potential to assess
the  emotional  state  of  a  patient  and  the  scores  of  psychiatric  questionnaires  from passive
variables in advance. This offers a real real-time monitoring of patients and hence better risk
detection and treatment adjustment.
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Introduction

The presence of a specific mood status is a necessary criterion for many psychiatric diagnoses,
as outlined in the Diagnostic and Statistical Manual of Mental Disorders [1], and self-perceived
mood is a fundamental component of assessing mental states in psychiatry [2, 3]. Therefore,
precise monitoring and following of mood conditions play a vital role in mental health care. For
instance,  both  positive  and  negative  mood  states,  as  well  as  their  fluctuations,  have
demonstrated their predictive value for significant outcomes, such as compulsive overeating
episodes  in  bulimia  nervosa,  adherence  to  treatment  in  bipolar  disorder,  and  opioid  use
disorders  [4,  5].  In  recent  years,  technological  advancements  have  facilitated  the  real-time
tracking of individuals’ self-reported mood status. One notable advancement is the utilization
of  smartphone-delivered  Ecological  Momentary  Assessment  (EMA),  which  allows  for  the
analysis of an individual’s experiences, behavior, and emotions as they unfold in their natural
environments [6]. However, the effectiveness of this method of mood state evaluation largely
depends  on  the  individual’s  level  of  self-awareness  and  ability  to  interact  with  the  EMA
platform. In many cases, psychiatric disorders can cause behavioral changes that decrease the
likelihood of individuals engaging with an EMA tool, resulting in missing data. Consequently, a
crucial research priority is the development of objective behavioral biomarkers for mood states
that can be passively sensed without requiring active involvement from individuals.
By  harnessing  the  power  of  patients’  mobile  phones  and  wearable  devices,  it  has  become
feasible to gather continuous sensor data in a noninvasive manner, providing valuable insights
into their daily activity patterns [7]. These models hold the potential to forecast mental health
crises and detect abnormal behavioral patterns, facilitating early intervention [8].
In this  study,  we examine daily summaries of  passively collected behavioural  data,  treating
them  as  multivariate  time  series. Passively  collected  data  refer  to  behavioral  information
recorded through sensors embedded in devices such as wearables and mobile phones, where
patient  interaction  is  not  required  for  data  capture.  This  passive  data  collection  is
supplemented by actively provided inputs from patients,  such as self-reported emotions or
responses to questionnaires tailored to the study context. The dataset utilized in this research
was  obtained  using  the  eB2  application,  a  platform developed  by  our  research  group  and
implemented across multiple studies.  These studies encompass a variety of patient cohorts,
providing extensive behavioral data complemented by responses to psychological, quality-of-
life, and nutrition-related questionnaires, depending on the specific objectives of each study. 
For  time-series analysis,  we use  transformer models,  which are particularly well-suited for
capturing  long-range  dependencies  within  sequential  data  [9].  Leveraging  the  advantages
offered by transformer models for time series analysis, we aim to uncover underlying patterns
in the data collected over time.  The attention mechanism in transformers is  a fundamental
feature that enables the model to prioritize relevant temporal dependencies within the input
sequence. By assigning varying weights to different time samples in the sequence, transformers
can effectively capture and integrate the most pertinent information for accurate forecasting
[10, 11]. Furthermore, transformer models exhibit the ability to handle sequences of variable
lengths. This flexibility renders transformers scalable to datasets containing a large number of
time points, accommodating diverse time series lengths without sacrificing performance [12].
These attributes position transformers as a promising option for time series forecasting,  as
they facilitate the modeling of complex temporal patterns and enhance forecasting accuracy.
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Related work
This section covers different aspects related to depression diagnosis and tracking, including
research in patient emotional state monitoring and the reliability of the PHQ-9 questionnaire
for its diagnosis. Moreover, it explores how researchers are utilizing passive observations to
obtain standardized and objective insights into patients’ self-reported states. Following this, we
introduce works that apply machine learning and deep learning methods to analyze such data
for enhanced diagnosis accuracy and longitudinal patient tracking.  Lastly,  we provide some
background on transformer-type attention models for time series forecasting.

Depression Diagnosis and Tracking
As numerous studies have shown [13, 14, 15], depression remains the worldwide leading cause
of disability. However, conventional diagnosis and tracking approaches primarily rely on self-
reported  depressive  symptoms  in  clinical  settings,  methodologies  established  over  half  a
century  ago.  These  methods  typically  entail  survey  completion  or  face-to-face  interviews,
offering limited accuracy, ecological validity, and reliability while imposing significant costs for
monitoring  and  scalability  [16].  Moreover,  the  subjective  nature  of  patient  and  clinician
evaluations,  combined  with  the  fluctuating  nature  of  mental  health  conditions  over  time,
emphasizes the need for ongoing, longitudinal assessments to accurately capture these nuances
effectively. In terms of assessing depression, the PHQ-9 questionnaire has shown to be reliable
for the criteria-based diagnosis of this disorder, alongside giving a valid measure of depression
severity. These characteristics plus its brevity make the PHQ-9 a useful clinical and research
tool [17].
A set of studies focuses on the relationship between mood variability and some psychiatric
disorders. In this work, we used mood in the sense of the subjective variation of the patient’s
emotional  state  as  expressed  by the  patient  [18].  Research  indicates  that  mood  variability
including  hypomania,  cyclothymia,  and  hyperthymia  have  been  described  in  40–50%  of
patients with depression and that such variability could also characterize anxiety disorders
[19, 20]. Over the past two decades, there has been a surge in research linking various patterns
of short-term emotional change to adaptive or abnormal psychological functioning, often with
conflicting results [21]. Psychiatric decompensations are characterized by specific patterns of
emotional fluctuations across time and provide insight into what constitutes optimal and sub-
optimal emotional functioning.

Advances  in  Ecological  Momentary  Assessment  (EMA)  and  Passive
Monitoring
To  prevent  bias  and  capture  changes  in  behavior  over  time  and  across  different  contexts,
several researchers propose a shift away from relying solely on global retrospective self-reports
collected during research or clinic visits in clinical psychology assessment [22]. In Ecological
Momentary Assessment (EMA), data is repeatedly collected on subjects’ current behaviors and
experiences as they happen in their everyday environments [6, 23]. EMA helps reduce memory
bias,  provides more accurate insights into daily life,  and allows for the study of small-scale
influences  on  behavior  in  real-world  settings.  Technologies  used  for  EMA  range  from
traditional written diaries and phone calls to electronic diaries and physiological sensors [22].
In  this  case,  an  EMA-style  monitoring  is  conducted  to  rely  solely  on  passively  collected
variables through mobile phone sensors and wearables, excluding all the patient-reported data.
Several  studies  that  reviewed  the  passive  follow-up  of  patients  with  different  conditions,
including bipolar disorder, schizophrenia, and depression, highlighted the potential of passive
biomarkers for the monitoring of different types of disorders. Particularly, variables such as
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accelerometry, location, audio, and usage data showed a high general performance [24]. Other
studies explored the detection of daily-life behavioral markers through mobile phone global
positioning systems (GPS) and usage sensors. They showed that features extracted from these
sensors provided markers strongly related to depressive symptom severity [21]. In this line,
one of the variables that has shown a correlation with the individual’s mental state is daily
activity [25,  26].  A study focused on detecting emotional  state instabilities through passive
data, found that three weeks of continuous, passive recordings were enough to reliably predict
mood changes, obtaining average and median errors of Mood Instability Scores (MIS) within a
margin of 5% [27].

Machine Learning and Deep Learning Approaches for Behavioral Data
Analysis
Due to the potential demonstrated by these variables in predicting emotional states and their
variability in patients, previous works have focused on the application of machine learning and
deep learning algorithms to analyze this data [28]. A study by Ghandeharioun et al. [13] applied
machine learning methods to data on sleep behavior,  motion,  phone-based communication,
location  changes,  and  phone  usage  patterns,  to  impute  missing  clinical  scores  from  self-
reported  measures  and  predict  depression  severity  from  these  continuous  sensor
measurements.  Similarly,  other  studies  evaluated  the  performance  of  random  forest  and
support vector machine classifiers for binary classification of  the PHQ-9 score,  resulting in
60.1% and 59.1% accuracy, respectively, demonstrating a proof of concept for the detection of
depression from passive features [29]. Following this approach, diagnostic meta-analyses have
demonstrated the effectiveness of the PHQ-9 for depression screening using mobile devices
through various machine learning techniques [30].
Recent studies [30, 31] have focused on longitudinal monitoring of patients highlighting the
importance  of  continuous  follow-up  and  the  exploration  of  temporal  behavioral  patterns.
Aiming to address  the lack of  clarity on the temporal  scale,  specificity,  and person-specific
nature  of  the  associations  between smartphone  data  and  affective  symptoms,  a  study  was
conducted  on  smartphone-based  passive  sensing  to  identify  within-  and  between-person
digital markers of depression and anxiety symptoms over time [31]. Here, hierarchical linear
regression models and temporal windows were used to understand the time scale at which
sensed features relate to mental health symptoms and explore the predictions in the distal,
medial, and proximal times. In line with this, other studies employed multilevel modeling to
examine  the  relationships  between  daily  mood  and  mood  variability  with  symptoms  of
depression, generalized anxiety, and social anxiety, to confirm the empirical evidence linking
EMA of mood variability with psychiatric disorders [33]. The findings showed both common
and specific emotional dynamics that defined the severity of affective symptoms.
Our research aligned with previous studies by aiming to predict self-reported emotional states
and  their  fluctuations,  as  well  as  PHQ-9  questionnaire  scores.  However,  our  methodology
diverges  from  conventional  approaches  by  operating  within  the  natural  daily  routines  of
patients, not in an experimental setup. Besides, our sample included patients with a variety of
disorders who were expected, but not compelled, to actively report data via the application.
This setup introduced challenges, notably the substantial presence of missing data, which we
addressed using a hidden Markov model, as documented in prior literature [34]. We build upon
this  paper,  which  predicted  emotional  valence  from  passive  variables,  employing  HMM  to
handle missing values and classification methods. With the proposed model, we enhanced the
emotional valence prediction achieved in this paper and obtained a more reliable prediction as
the time horizon expanded. Additionally, we included the prediction of the scores of the PHQ-9
questions.
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To leverage the continuous acquisition of passive variables and work with these temporal data
sequences, this study adopted a transformer-based approach. Transformer models, based on
attention mechanisms, offer several advantages for time series forecasting.  The transformer
architecture, as introduced in the paper by Vaswani et al. in 2017 [10], excels at capturing long-
range  dependencies,  making  it  well-suited  for  time  series  data  where  distant  historical
information  can  be  crucial.  Attention  mechanisms  within  transformers  enable  contextual
understanding,  allowing  the  model  to  weigh  the  significance  of  past  elements,  thereby
improving forecasting accuracy [10, 12].
In  addition  to  the  previously  mentioned  references,  several  publications  delved  into  the
application  of  transformers  to  multivariate  time-series  data  [12,  35,  36],  showcasing  the
flexibility  and  adaptability  of  the  transformer  architecture  in  capturing  complex  temporal
relationships.  Initially  developed  for  natural  language  processing  tasks,  transformers  have
demonstrated a seamless transition to time-series forecasting due to their inherent capability
to model temporal data. This shift underscores the versatility and robustness of transformer-
based  models  in  addressing  diverse  sequential  data  tasks  beyond  language  processing.
Furthermore, pre-trained transformer models can be fine-tuned for specific forecasting tasks,
leveraging  insights  from  diverse  datasets,  as  demonstrated  in  various  transfer  learning
applications.  Finally,  attention  weights  also  contribute  to  their  utility  in  analyzing  and
forecasting time series data in a more interpretable way [37].
To the best of our knowledge, no prior studies have utilized transformer models specifically for
emotion  recognition  relying  solely  on  behavioral  (passive)  data  from  mobile  devices.  This
represents a novel direction in leveraging behavioral data for emotion classification and change
detection, particularly in real-world, non-invasive contexts.
In other domains, emotion recognition has been explored using ransformer models applied to
various data modalities. For text-based emotion recognition, transformer models such as BERT
and GPT proved to be effective in capturing emotional nuances in textual data. For instance, Xie
et al.  [49] used GPT to encode dialogue features,  while Zaidi et al.  [51] combined RoBERTa
embeddings with wav2vec 2.0 for cross-modal emotion recognition.
For audio-based emotion recognition, speech data have been modeled using architectures like
wav2vec 2.0. Luna-Jiménez et al. [48] fine-tuned xlsr-wav2vec2.0 for detailed speech emotion
analysis, while Sun et al. [52] combined it with BERT for multimodal integration.
Transformers  have  also  been  employed  for  visual-based  emotion  recognition,  where  facial
expressions and gestures were analyzed. Huang et al.  [47] utilized the multi-head attention
mechanism to fuse visual and audio features, effectively capturing both spatial and temporal
dynamics.
Multimodal  emotion  recognition,  which  combines  text,  audio,  and  visual  data,  has  been  a
common approach. Xie et al. [49] proposed a Crossmodality Fusion Transformer, and Zhao et al.
[53] introduced MEmoBERT for cross-modal emotion classification tasks.
In the field of physiological emotion recognition, Transformer-based models like MATS2L [50]
and Conformer [54] have demonstrated high accuracy in analyzing EEG and ECG signals for
emotion classification.
In contrast  to these approaches,  our work focused exclusively on behavioral  data collected
passively  through  smartphones  and  wearable  devices,  without  relying  on  more  invasive
techniques  such  as  video,  voice,  or  physiological  signals  like  EEG.  This  distinction  offered
significant  advantages.  By  aligning  with  natural  patient  behavior  and  environments,  our
method reduced intrusiveness,  ensured  scalability,  and  facilitated seamless  integration  into
daily life, making it particularly suitable for real-world applications.
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Objectives

The general goal is to acquire objective indicators of patients’ conditions and fluctuations in
their  emotional  well-being  from  passive  biomarkers.  For  this,  we  focus  on  predicting  the
emotional valence of patients as well as the PHQ-9 score. This approach aims to address the
challenge of subjectivity and the absence of continuous monitoring in psychiatry, ultimately
aiding  in  the  identification  of  potentially  risky  situations.  This  would  facilitate  timely
intervention and treatment adaptation, thus improving the quality of life of the patients and
their environment. We strive to achieve this prediction several days in advance of the actual
event. Moreover, the incorporation of attention mechanisms serves the additional purpose of
advancing our understanding of behavioral patterns.
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Methods

Recruitment. Patient Inclusion and Exclusion Criteria and Indications

Participants were eligible for inclusion in the study if they were at least 18 years
old and diagnosed as clinical outpatients with mental disorders by specialists, or
if  they were attending therapy groups.  Among these groups,  there were three
main categories: High suicidal risk, eating disorder, and common mental disorder
(CMD).  CMD encompasses a  group of  distress  states  manifesting with anxiety,
depression,  and  unexplained  somatic  symptoms  typically  encountered  in
community  and  primary  care  settings  [38].  Furthermore,  patients  from other
studies, including cohorts of patients affected by cancer,  HIV, obstructive sleep
apnea, and cardiac conditions, as well as control patients, were included.
Participants  were  required  to  own  a  smartphone  running  on  Android  or  iOS
operating systems, which they connected to a Wi-Fi network at least once per
week.  Only  participants  who  provided  written  informed  consent  for  the  eB2
study were included.
Patients received instructions from the clinicians at the beginning of follow-up.
For most cohorts, only information regarding the application’s functionality was
provided. However, two groups received specific guidance: patients with eating
disorders were required to compulsorily complete meal entries, while patients
with  CMD  were  encouraged  to  regularly  log  their  emotions  and  periodically
complete the PHQ-9 questionnaire. There was no obligation or a set number of
required responses for these tasks.
Passive  data  sources  included  both  mobile  and  wearable  devices.  In  certain
studies (HIV,  cancer, and obstructive sleep apnea) wearables were provided to
patients.  For  the  remaining  studies,  if  patients  had  their  own  wearable,
information was extracted from the most reliable data source.

Data

This study was conducted on a sample of 4403 patients from 8 distinct cohorts,
each  characterized by  a  different  pathology  or  condition.  The  patient  cohorts
included  individuals  with  Common  Mental  Disorder  (CMD)  (1785,  40.96%),
eating  disorder  (1477,  33.89%),  High  Suicidal  Risk  (413,  9.48%),  cancer  (84,
1.92%), obstructive sleep apnea (48, 1.1%), HIV (24, 0.55%), cardiology-related
conditions (20, 0.46%), as well as control subjects (507, 11.63%).
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The data for this study is derived from secondary analyses of multiple clinical
studies  conducted  in  collaboration  with  various  hospitals.  All  studies  were
designed  to  monitor  patients  with  distinct  health  conditions  using  the  eB2
platform.  Despite  differences  in  data  sources,  standardized  protocols  for  data
collection were applied across all studies to ensure consistency in data quality.
Each  clinical  study  received  approval  from  the  relevant  Institutional  Review
Board (IRB) in compliance with ethical standards and the Declaration of Helsinki.
IRB approval numbers are indicated in brackets and correspond to the center
where approval was obtained for each project and country.
Patients at high risk of suicide were identified through collaborations with the
Jiménez Díaz Foundation (FJD, EC005-21), Montpellier University Hospital (CPP
Ouest IV 20/18_2), and Clínica Nuestra Señora de la Paz. Patients with common
mental disorders were recruited from FJD (PIC148-22), while those with eating
disorders  were  monitored  at  specialized  mental  health  centers,  including
Adalmed and ITA clinics. The study also includes cancer patients monitored in
partnership  with  Gregorio  Marañón  Hospital  (EB2COLON2023),  CNIO,  and
Fuenlabrada  Hospital;  HIV  patients  from  Gregorio  Marañón
(MICRO.HGUGM.2022-002); cardiology patients from Clínico San Carlos Hospital
(19/239-O_P);  and  patients  with  obstructive  sleep  apnea  monitored  at  FJD
(PIC163-22). Informed consent was obtained from every participant at the time
of inclusion, ensuring adherence to ethical guidelines and participant rights.
All  users were Spanish and French.  Among them, 57.48% (2531 out of  4403)
were female, 40.93% (1802 out of 4403) were male, and gender information was
missing for the remaining 1.59% (70 out  of  4403).  All  age groups were well-
represented, with a mean age of 46 years (ranging from 18 to 77 years) at the
start of the measurement period.
Patient monitoring was conducted using the eB2 MindCare application [39, 40].
The eB2 application operates by harnessing information from diverse sources
within the patient’s ecosystem. Utilizing phone sensors, Google Fit, and wearable
devices, it acquires data at varying intervals, facilitating a nuanced understanding
of the patient’s daily activities. In parallel with this passive monitoring, patients
had  the  option  to  input  subjective  experiences,  sleep patterns,  and emotional
states throughout the day. Emotional states are cataloged within the application,
offering 20 options in a spectrum from anger to delight [41, 42].
Daily  summaries  of  this  data  were  the  primary  focus,  although  alternative
granularities  were  also  considered  (hours,  minutes…).  Therefore,  when
predicting sequences or emotions at the next temporal moment, this temporal
interval is in days. The data collection period for this study spans 8 years, from
2016 to 2023, and the average duration of passive activity sequences for patients
is 224 days, with a standard deviation of 200 days.
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The data utilized as inputs for training the models were daily summaries of the
following passive variables: step count, covered distance, sleep hours, app usage,
time at home, number of visited places,  and practiced sport,  a binary variable
indicating whether the patient practiced sports during the day. The targets we
aimed to predict from these passive data were patients’ emotional valence and
PHQ-9 scores. The ground truth values for these targets come from self-reported
emotions  and  questionnaire  answers  that  patients  complete  through  the
application.  A more detailed description of the different cohorts is included in
Multimedia Appendix 1.

Preprocessing 

To ensure the variables were sampled at the same frequency, daily summaries were created for
each variable. These daily summaries were derived by aggregating the data according to the
specific variable. 
Sleep  hours,  distance,  steps,  and  app  usage  were  calculated  using  passive  data  collection
methods  from  various  sources.  Sleep  hours  were  determined  based  on  a  prioritization
hierarchy: user-entered data is the most prioritized, followed by wearable devices, mobile data,
and  lastly,  a  sleep  estimation model.  Daily  distance  was  calculated  using  GPS  signals  from
mobile  devices,  collected  every  5  minutes.  Step  counts  were  gathered  at  intervals  of  1–5
minutes,  depending on the provider.  To calculate daily totals,  step data from each slot  was
merged  by  priority  (wearables  over  mobile).  App  usage  was  recorded  every  5  minutes,
capturing which apps were used and the duration of their use. For these four variables, once
the data had been collected and selected from the priority sources, the data were summed to
obtain the daily summary of each variable.
To identify home and work locations, the DenStream algorithm was utilized. Location data was
collected over a 15-day period to form clusters. Once the clusters were established, incoming
location data was tagged in real-time as either home, work, or other. The cluster definitions
were  updated  every  30  days  following  the  initial  15-day  period.  Based  on  this  clustering
process, the time a user spent at home was calculated. Data was collected every 5 minutes and
tagged upon entry to indicate the cluster corresponding to “home.” The total time at home was
measured in seconds and aggregated for daily summaries.
The variable practiced sport was a boolean value indicating whether a user engaged in physical
activity lasting at least 15 minutes during the day. This variable was updated whenever new
physical  activity data  was received.  Physical  activity detection was based on three primary
sources: (1) activities automatically labeled by devices (e.g.,  mobile phones,  wearables),  (2)
manually  logged  activities  by  users  through  the  provider’s  app,  and  (3)  activities  logged
directly into the eB2 MindCare platform.

To address the variations between sensors and data formats, which resulted in anomalies and
noise  in  the  information,  a  preprocessing  stage  was  carried  out.  This  included  removing
negative values,  thresholding the time-related variables to 24 hours,  the time step count to
30,000  per  day,  and  the  distance  to  500  km.  Finally,  data  were  standardized  over  all  the
patients’ sequences (0 mean and SD 1 for input features). Standardization was performed to
ensure all variables had a uniform scale,  which improves the efficiency and performance of
machine learning algorithms. This is particularly important for models sensitive to differences
in  feature  scales,  such as  neural  networks or  distance-based methods.  Figure  1  shows the
sequence of data preprocessing.
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Figure 1. Data preprocessing pipeline: data acquisition, obtention of the daily summaries, and
standardization of behavioral data. The sequence shown in the daily summaries displays the
temporal sequence of passive data for five different patients. The intensity of the lines indicates
the amount of non-missing behavioral data the patient has for that day.

Regarding passive data,  the mean percentage of missing data was approximately 60%, with
step count (52.6% of total missing) having the fewest missing values, and time at home being
the least complete (69.4% total missing). Table 1 shows the percentage of missing values per
passive variable grouped by year.

Table 1. Percentage of missing daily data for each passive variable by year.

Passive Variables
Year Steps Distance Sleep App

usage
Time
home

Location
clusters

Emotion
s ratio

PHQ-9

201
8

60.42 39.64 70.82 90.21 49.18 44.76

201
9

50.32 39.64 74.97 78.45 50.71 48.39

202
0

59.10 54.43 78.14 75.75 65.82 64.40

202
1

60.09 73.48 56.36 52.30 77.99 77.67

202
2

49.89 78.85 53.48 58.16 80.43 79.93

202
3

46.85 77.18 51.84 55.01 78.85 78.47

Total 52.61 63.43 64.41 67.66 69.47 68.15 96.34 98.00
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Regarding targets, Table 1 shows the percentage of missing emotion ratio and PHQ-9 answers
in  comparison  with  the  passive  data.  It  can  be  observed  that  the  variables  reflecting  the
patients’ mood (self-reported emotions and PHQ-9 answers), which they must enter actively,
had  the  lowest  percentage  of  registered  data.  This  is  why  we  aimed  to  predict  these  two
variables  using  passive  data,  as  they  were  more  complete  and  allowed  for  continuous
monitoring of the patient’s condition without relying on the patients to input the data.
In  this  study,  we  handled  emotions  following  Russell’s  classification  scheme,  which
characterizes emotions in a two-dimensional space [43]. James Russell's [56] circumplex model
proposed that emotions could be understood along two independent and bipolar dimensions:
valence  (pleasantness/unpleasantness)  and  activation  (high  arousal/low  arousal).
Independence  implied  that  valence  and  activation  were  uncorrelated,  while  bipolarity
suggested  that  opposite  emotions  lied  at  opposite  poles  of  each  dimension.  For  example,
happiness  and  sadness  represented  opposite  ends  of  the  pleasantness  spectrum,  whereas
emotions like tense and sleepy lied at opposite extremes of the activation dimension.
Using  this  framework,  emotions  reported  by  patients  were  assigned  a  level  of  valence  as
positive (pleasant), negative (unpleasant), or neutral. For instance, positive valence emotions
included  happiness,  enthusiasm,  or  satisfaction,  while  negative  valence  emotions  included
sadness, anger, or frustration. Neutral valence emotions fell in the center of the pleasantness
spectrum, representing a lack of strong affective polarity [57]. Related studies [58] similarly
relied on the model proposed by Russell to categorize emotions, either in 1D using valence or
in 2D with both valence and arousal.  From this  scheme,  we focused on emotional  valence,
which was the first prediction target. 
The  daily  valence  was  determined  by  the  difference  between  the  counts  of  positive  and
negative  emotions  and  can  take  values  between  0  and  2  (negative,  neutral,  and  positive
valence).
Additionally,  the  Patient  Health  Questionnaire  (PHQ-9),  comprising  the  9-item  depression
module extracted from the full PHQ, was examined as another target variable. According to this
questionnaire, diagnosis of major depression is established if “more than half the days” over
the past 2 weeks exhibited the presence of 5 or more depressive symptom criteria, with one of
these  symptoms  being  either  depressed  mood  or  anhedonia  [17].  The  responses  to  the
questionnaire  were  derived  from  the  cohort  of  CMD  patients,  comprising  a  total  of  597
completed surveys. In the context of this investigation, each of the 9 questionnaire items was
treated independently. This approach was adopted due to the diverse nature of the questions,
which  collectively  encompassed  various  facets  of  the  patients’  daily  experiences.  The
simultaneous prediction of all scores posed a considerable methodological challenge in this
initial endeavor.
Originally,  this  score  comprised  four  classes.  However,  due  to  the  insufficient  number  of
answers for each type and the frequency-based nature of the responses (ranging from “not at
all” to “nearly every day”), the intermediate classes sometimes merged with the two extreme
groups.  Consequently,  we  decided  to  classify  the  answers  into  two  broader  classes:  0
(representing “not at all” and “several days” as low frequency) and 1 (representing “more than
half of the days” and “nearly every day” as high frequency).

Models

Our  global  model,  illustrated  in  Figure  2,  consists  of  3  main  sub-models  that  are  trained
separately. Hence, we can consider that the global model is trained in three stages: 1) training
of the hidden Markov model to deal with missing fields, 2) the autoregressive transformer to
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pre-train the model  to capture the temporal  structure of the data,  and 3) the classification
model itself.
Initially, the raw data undergo the preprocessing and quality control mentioned previously. To
prevent data leakage between the different training phases and biases, the original dataset was
divided into three subsets for training and validation purposes, with 30%, 40%, and 30% of the
data allocated to the hidden Markov model, transformer, and classification layers, respectively,
as shown in Figure 2.  The partitions  are  made by assigning equitable  percentages  of  each
cohort to each subset to mitigate biases, assigning unique different users to each of them. The
following sections describe in detail the three main stages.

Figure 2. The graphical abstract of the proposed scheme illustrates the underlying architecture,
comprising three primary blocks.  The first  block involves  the  utilization of Hidden Markov
Models (HMM) to address missing data and extract posterior state probabilities. The second
block employs a transformer model equipped with an attention mechanism to facilitate pattern
recognition and time-series forecasting. Lastly, the scheme incorporates a final classification
layer responsible for patient-reported variables, namely Emotional Valence or PHQ-9 score.

Probabilistic  Generative Model  for  Dealing with  Missing Data:  Hidden
Markov Models

Our  objective  was  to  evaluate  the  efficacy of  transformer  models  in  enhancing time-series
forecasting.  However,  transformer  models  do  not  inherently  accommodate  missing  data,
presenting a challenge for our analysis. To address this limitation, we employed hidden Markov
models (HMMs). Additionally, we leveraged the latent space representation provided by HMMs,
utilizing the posterior probabilities of the hidden states for training the transformer model.
HMMs, commonly employed in time-series analysis, represent a temporal variant of Markov
models (MM) [44, 45]. These generative models are characterized by a collection of observable
variables  and  a  notable  advantage  lies  in  their  ability  to  manage  missing  data  without
necessitating  prior  imputation,  achieved  through  marginalization.  In  the  HMM  model,  a
sequence  of  observable  variables  O  is  generated  by  a  corresponding  sequence  of  internal
hidden states S. However, these hidden states are not observed directly. Instead, transitions
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between hidden states follow the assumption of a first-order Markov chain.  This transition
process  is  defined  by  a  start  probability  vector   and  a  transition  probability  matrix  A.π
Additionally,  each  observable  emission  is  associated  with  a  probability  distribution,
conditioned  on  the  current  hidden  state.  These  emission  probabilities  are  specified  by
parameters B. Together, these parameters  = ( , A, B) fully define the HMM.λ π
The  dataset  utilized  in  this  study  exhibited  heterogeneity,  encompassing  both  categorical
variables such as practiced sports, as well as continuous variables presumed to take real values
(Table 1). For this purpose, we employed the heterogenous-HMMs (HHMMs) implementation
from the PyHMM library, which facilitates the utilization of various distributions to manage the
emission probabilities of each feature type as depicted in Figure 3 [46, 34].
In this initial phase, the hidden Markov model (HMM) was trained using 30% of the available
data, and, once trained, the model was used to infer the state posterior probabilities. At each
time step, the set of passive data for a given day and patient was represented by a hidden state
posterior probability vector, with a total of 7 hidden states in this instance. Previous studies
[34]  tested  different  hidden state  configurations,  and  7  hidden components  were found to
effectively capture the underlying patterns in the data. The optimal number of hidden states
was  determined  using  the  Bayesian  Information  Criterion  (BIC)  and  Akaike  Information
Criterion (AIC) on a randomly selected subset of sequences with varying levels of missingness
[55]. This number of hidden states also led to the best results when a classifier was applied to
predict emotions.
The hidden states’ posterior probabilities refer to the probabilities of the hidden states given
the observed data.  These probabilities are calculated using the observations and the model
parameters. The sequence of hidden states probability vectors served as the embedding of the
daily information for each patient, enabling the training of subsequent models.

Figure 3.  Architecture of Heterogeneous hidden Markov model.  Model is described by their
hidden  states  sequence  (s0:Tn)  and  continuous  observations  sequence  (y0:Tn),  discrete
observations sequence (l0:Tn) [44]. In our case (l0:Tn  ) corresponded to the sequence of discrete
observation: practiced sport and (y0:Tn) was the sequence of continuous observations: steps,
location distances, sleep time, app usage, time home and location clusters count.

Sequence Forecasting with Transformer Model

Due  to  the  limited  data  on  emotions  and  PHQ-9  responses,  to  obtain  a  more  informative
representation  of  the  time  series,  we  first  performed  a  phase  of  self-supervised  training,
following a forecasting approach.  To achieve this, we employed a transformer model for time-
series  forecasting,  leveraging  its  strengths  in  handling  sequential  data.  Transformers  have
shown  promising  results  in  capturing  long-range  dependencies  and  can  provide
interpretability regarding the most relevant parts of the sequence for each specific task. Our
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transformer  followed  the  basic  encoder-decoder  structure,  as  depicted  in  Figure  4,
incorporating elements from the encoder of the Informer model [12].
The encoder within the transformer architecture comprised a series of 3 layers.  Each layer
incorporated two distinct sub-layers: a multi-head self-attention mechanism and a position-
wise fully connected feed-forward network. Following each sub-layer was a residual connection
and layer normalization. Likewise, the decoder consisted of 3 layers. In addition to the two sub-
layers present in each encoder layer, the decoder incorporated a third sub-layer responsible for
performing  cross-attention  over  the  output  generated  by  the  encoder  stack.  Residual
connections  and  layer  normalization  were  similarly  applied  around  each  sub-layer  to  the
encoder. To prevent the decoder from attending to subsequent positions, modifications were
made to the self-attention sub-layer within the decoder stack, implementing masking: causal
(masked) self-attention.
Through the encoder, we obtained contextual information, and with the decoder, we performed
the prediction of  future  observations,  considering  both the contextual  information and the
current  observations.  To incorporate  information about the  relative or  absolute  position of
tokens in the time series we combined a positional encoding with the input embeddings at the
beginning of both the encoder and decoder stacks [10].

Figure  4.  On the  left  side  of  the  image,  the  simplified  encoder-decoder  architecture  of  the
transformer model is shown [10]. On the right side, an example of model training and inference
is  illustrated.  During training,  the model learns the parameters to forecast  the future state,
using the real data as a reference. During inference, the transformer’s decoder is responsible
for forecasting the future state value in an autoregressive manner. The blue line shows the true
states, and the orange line shows those predicted by the model. During inference, the possible
future states have associated probabilities,  which are illustrated in the graph with different
colored margins around the orange line.

The  transformer  model  was  trained  from  scratch  in  a  forecasting  paradigm,  wherein  the
transformer’s output was compared to the actual output shifted one day ahead. This approach
enabled the model to predict future time points with precision. Since our dataset consisted of
real-world data, it was uncommon for the patients to have extensive sequences of data. Because
of this limitation, for model training, we experimented with different sequence lengths, aiming
to  strike  a  balance  between  model  performance  and  sequence  duration.  Through
experimentation  with  various  sequence  lengths  for  both  the  encoder  and  decoder,  we
determined  that  a  sufficiently  large  sequence  (between  25  and  30  days)  was  required  to
adequately capture relationships and facilitate accurate forecasting.
For  training  we  used  diverse  training  schedules,  integrating  early  stopping  and  dropout
techniques  to  mitigate  data  overfitting.  The  loss  functions  we  tested  included  both  mean
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squared error (MSE) and mean absolute error (MAE), computed between the predicted and
actual future sequences.  Optimization was carried out using the Adam optimizer across 80
epochs.
A  hyperparameter  grid  was  defined,  including  values  for  model  dimensions  (32,  64,  128),
number  of  attention  heads  (4,  8,  16),  number  of  encoder  and  decoder  layers  (2,  3,  4,  6),
feedforward dimensions ( 128, 256, 512), dropout rate (0.3, 0.5), and learning rate (0.01, 0.001,
0.0005). 
The best-performing model,  which we present  in  our  results,  was trained using sequences
spanning 50 days of passive data, with 30 days allocated for the encoder and 20 days for the
decoder.  During inference,  using  the preceding 30 days  of  collected data  was sufficient  for
forecasting, since the model could then predict further into the future autoregressively. The
optimal model configuration was achieved with an embedding dimension of 32, 4 attention
heads, 3 layers, a feedforward dimension of 128, a dropout rate of 0.3, and a learning rate of
0.001. The results obtained for the different combinations of hyperparameters,  as well as a
more detailed explanation of the employed architecture, are included in Multimedia Appendix
2.

Emotional State and PHQ-9 Score Classification

For this section,  we employed the output of the transformer model to train the subsequent
classification layers, aimed at predicting specific targets. The objective was to predict emotional
valence and the PHQ-9 scores for the following day.
For the prediction of emotional states,  the HMM was first applied to the data sequences to
obtain the posterior probabilities of the hidden states of the Markov model, which represented
the embeddings of the passive data sequences. Subsequently, forecasting for the following days
was conducted using the transformer, trained in the previous phase. These outputs were then
utilized to train a model for emotional valence classification.
Several classification models were experimented with, including multilayer perceptron (MLP),
ensemble models (EM), support vector classifier (SVC) and extreme gradient boosting (XGB).
Among these, random forest classifiers (RF), as part of the EM, and XGB demonstrated superior
performance. This constituted the third training phase, which we evaluated through F1-score,
accuracy, precision-recall (PR) curves, and ROC curves, along with their respective AUCs. For
each input day, these models provided a probability distribution of the predicted emotional
valence  for  the  following  day,  which  in  this  case  was  a  probability  distribution  among  3
possible outcomes (0, 1, and 2). In this regard, we analyzed both the probability distributions of
the valence predicted by the model and the concrete valence estimated for the following day
(the one with the highest probability).
As for the PHQ-9 score, to predict the binary score for each of the questions we compared
several  classifiers by training them with temporal  windows of  15,  7,  and 3 days  using the
transformer output (the contextual embeddings), the emotions predicted by the classifier or a
combination of the hidden states’ posterior probabilities and the predicted emotions.

Results

Time Series Forecasting

In this section, we first compare the time-series forecasting capabilities of the transformer and
the HMM, without considering specific target predictions, solely as a comparison of their ability
to capture the temporal structure and prediction performance of both models.
For the forecasting of the sequences of the posterior probabilities of the hidden states, which
represent  the  information  of  the  passive  observations,  our  results  demonstrate  enhanced
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stability over time when comparing the transformer model to the HMM model.  Specifically,
when both models perform autoregressive forecasting, predictions made by the transformer
model exhibit greater similarity to the true values as we project further into the future beyond
the last observed day.
Figure 5 presents the accuracy of state forecasting, measured as the rate of correctly predicted
states for 0-7 days into the future. While both models performed similarly for immediate next-
day predictions, the transformer’s predictions decayed more gradually than those of the HMM
model  as  the  forecasting  horizon  extended.  The  chosen  configuration  for  the  transformer
model involved training with sequences of 50 days -30 for the encoder and 20 for the decoder-
during the initial training phase, encompassing all potential patient sequences. Training with
shorter sequences yielded inferior forecasting performance.

Figure 5: Model comparison in state matches forecasting.

Emotional Valence Forecasting

In terms of emotional valence forecasting, our results focus on predicting emotional state one
day ahead. The most effective approach involves employing the XGBoost algorithm with a 7-day
window of the transformer model decoder as input for the classification layers.
Alternative approaches were explored for the classification. One included incorporating model-
embedded  vectors  of  the  hidden states,  not  the  final  output  of  the  decoder,  to  potentially
enhance informativeness, yet this yielded comparable results to only using the transformer’s
decoder  output.  Another  strategy  involved  retraining  the  entire  model  (including    the
transformer and classifier) or some of the layers via fine-tuning, as opposed to solely training
the classifier while keeping the transformer parameters frozen, to improve task performance.
However, the results were similar, and given the time and resource requirements for complete
retraining, we opted to train the classification layers for the specific task.
Results across different models used for classification exhibited minor variations, potentially
attributed to the embedded vectors effectively capturing necessary information for forecasting,
irrespective of the classification model’s complexity.
Table 2 shows the results for valence classification. Notably, the XGBoost model performed best
with a ROC AUC of 0.982 and an accuracy of 0.93. Of particular interest is the discrimination of
class number 2 (representing a neutral state), which is challenging to classify due to its scarcity.
Despite  a  slight  bias  toward  negative  valence,  models  achieved  robust  discrimination  for
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negative and positive states, and notably good results for the neutral state, one day in advance
of the actual event.

Table 2. Metrics for Emotion Classification Models. a

MLP RF XGB XGB-Retrained XGB-Embedding
Precision 0.86 0.87 0.89 0.89 0.84

Recall 0.82 0.86 0.86 0.85 0.8
F1-Score 0.84 0.87 0.87 0.86 0.8
Accuracy 0.91 0.93 0.93 0.94 0.9

AUC 0.97 0.98 0.98 0.98 0.92
PR 0.89 0.92 0.93 0.9 0.88

a For each metric, the results obtained with the best model are highlighted italics.

Figure 6 illustrates individual patients’ emotional series, where the blue line represents the
actual emotion for the current day, the orange line represents the forecasted emotion for the
following day, and the circles represent the probabilities predicted by the classification model
for each emotional valence for the next day. The position and size of the circles correspond to
their probability values, with higher probabilities resulting in larger circles. Purple indicates
valence 0 (negative), green indicates valence 1 (neutral), and red indicates valence 2 (positive). 
Regarding emotional valence change detection, analyzing the emotional valence distributions
reveals a pattern. During stable periods, the distributions are skewed, meaning that most of the
probability mass is concentrated around a single valence outcome. However, near a change, the
distributions  become  closer  to  a  uniform  distribution.  That  is,  the  probability  mass  is
distributed more evenly among the possible outcomes.

Figure 6. Sequences of real emotions (blue) and those predicted by the model (orange) for the
following day. The colored circles denote the probability distribution of the emotional state,
purple indicates state 0 (negative valence), green indicates state 1 (neutral), and red indicates
state 2 (positive valence). These figures pertain to two patients (ids: 374 and 218) selected
from a set of patients with high variability of emotion in their temporal sequence.

To  detect  the  change,  we  considered  calculating  the  entropy  and  the  Jensen-Shannon  (JS)
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divergence  within  a  temporal  window  of  the  sequence.  We  calculated  the  entropy  of  the
valences’ probability distributions (Equation 1) for a 3-day window, including the 3 previous
days to each event. The Jensen-Shannon divergence (Equation 2) was computed between the
present-day distribution and an average distribution over a temporal window, to determine
which approach could better determine the shift in emotional state: whether an increment in
disorder within the window or a comparison between the actual and previous distribution.

H(x) = – Σ pi log2 pi (1)
DJS (P||Q) = ½  Σ (pi log2 pi/qi + qi log2 qi/pi) (2)

In Figure 7, we display the real changes in emotional valence alongside the JS divergence and,
in Figure 8, real changes and change detection through entropy. An increase in entropy within a
three-day temporal window, as seen in this case, is associated with a shift in emotional state.
Similarly,  divergence  remains  low,  close  to  0,  during  stable  periods,  with  most  peaks
corresponding to real shifts in emotion.

Figure 7. JS divergence calculated in a temporal window (blue curve) and the true emotion
changes (grey vertical lines) for two patient sequences. 

Figure 8. Entropy calculated in a temporal window (blue curve) and the true emotion changes
(grey vertical lines) for two patient sequences. 

Figure 9 shows the ROC AUC for emotional change detection with entropy and JS divergence.
The results of change detection are shown for patients suffering from mental disorders, for
patients who have not been diagnosed with mental disorders,  and for the total of all study
participants  to  compare  detection  across  different  scenarios.  For  the  global  case,  lower
thresholds for both metrics yielded better results, with JS divergence outperforming entropy by
0.13 ROC AUC for change detection.
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Figure 9.  ROC curves  for  change detection with JS  divergence and entropy.  The curves  are
obtained for  change detection in  patients  suffering  from mental  disorders  (mental  dis.),  in
patients without any diagnosed mental disorders (no mental  dis.),  and for the entire study
cohort (global).

PHQ-9 Score Forecasting

Table  3  presents  the  accuracy  and  AUC  results  for  the  questionnaire  score  forecasting,
delineated by the classification into two classes over a temporal window of 7 days using the
decoder  transformer  outputs.  The  predictions  were  obtained  using  both  a  Random  Forest
classifier and an XGBoost Classifier, both of which demonstrated similar results.  Among the
results presented in Table 3, the difference lies in the input provided to the classifier: either
solely  the  transformer  output  (hidden  states),  the  transformer  output  combined  with  the
corresponding emotional state forecasting, or solely the emotional state. Notably, the results
across the three configurations exhibit similarity, slightly improved when exclusively utilizing
the hidden states or solely the emotion distribution sequence as input.

Table 3. PHQ-9 score forecasting results for questions 1 to 9.a

Transformer
Embeddings b

Transformer
Embeddings +

Emotion c

Emotion 3 days d Emotion 15 days d

PHQ-9
question

Accuracy ROC
AUC

Accuracy ROC
AUC

Accuracy ROC
AUC

Accuracy ROC
AUC

1 0.57 0.62 0.57 0.60 0.59 0.63 0.57 0.61
2 0.6 0.60 0.57 0.59 0.63 0.64 0.63 0.63
3 0.55 0.51 0.55 0.50 0.55 0.55 0.58 0.62
4 0.62 0.61 0.53 0.49 0.53 0.54 0.57 0.57
5 0.54 0.57 0.55 0.60 0.64 0.69 0.53 0.60
6 0.46 0.46 0.47 0.51 0.6 0.51 0.61 0.65
7 0.52 0.54 0.55 0.54 0.61 0.62 0.67 0.64
8 0.64 0.52 0.61 0.53 0.68 0.50 0.72 0.56
9 0.91 0.77 0.91 0.74 0.91 0.60 0.91 0.74

a Results correspond to the classifier performance with different input sets: 
b Classifier inputs: sequence of embeddings obtained from the transformer.
c  Classifier  inputs:  sequence  of  embeddings  obtained  from  the  transformer  along  with
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emotion valence prediction obtained from the emotion classifier.
d  Classifier  inputs:  sequence of emotion valence predictions obtained from the emotion
classifier.
e For each question, the results obtained with the best model are highlighted in italics.

When comparing different questions, certain inquiries demonstrate higher predictability than
others.  Notably,  question  9  consistently  yields  the  most  accurate  predictions  across  all
configurations. This question pertains to whether patients have experienced thoughts of being
better off dead or hurting themselves. In addition, question 8, which addresses difficulties in
movement or speech that others may notice, exhibits relatively accurate predictions, along with
question 5, which is related to appetite, and question 7, related to concentration problems.

Discussion

Principal Results

In terms of time-series forecasting, our findings indicate that the transformer model surpasses
the hidden Markov model  (HMM) in  predicting  future  time steps,  resulting in  more stable
predictions.  This  suggests  that  attention  mechanisms  within  the  transformer  model  are
effective in capturing longer temporal dependencies, leading to improved prediction stability.
Such  capabilities  are  particularly  beneficial  for  assessing  a  patient’s  state  several  days  in
advance,  providing  valuable  insights  into  their  potential  behavior  and  enabling  the  early
detection of high-risk situations.
The findings concerning emotional changes are generally positive, encompassing both global
emotion detection results and change detection one day in advance. The variance in outcomes
across  different  machine  learning  classification  algorithms  is  minimal,  highlighting  the
robustness  of  the  variables  and  their  latent  representation.  This  indicates  that  accurately
predicting a patient’s emotional state can be achieved solely through passive variables, with the
representation of these variables in the posterior probabilities of the hidden states (obtained
with generative models) proving to be informative.
When examining individual patient sequences, it becomes apparent that in many instances, we
can correctly anticipate mood shifts in advance. As for change detection using measures such as
entropy or divergence, there appears to be a correlation between the disorder in emotional
valence  probability  distribution  within  a  specific  temporal  window  and  the  subsequent
emotional state change. Furthermore, global findings indicate that divergence yields superior
results for change detection, suggesting that identifying relative disorder between the current
prediction  distribution  and  the  past-window  distribution  holds  greater  significance  than
overall  disorder  within  the  window,  although  both contribute  to  change  detection.  Similar
results  are  obtained  when  comparing  change  detection  in  patients  without  any  mental
disorders and those who suffer from them. This indicates that the detection is accurate in both
cases,  with  slightly  better  results  for  the  patients  without  mental  disorders.  This  can  be
expected, as the literature suggests that these patients exhibit less fluctuation in their emotions
compared to patients with mental disorders.
Regarding the PHQ-9 answers, our model aims to predict responses with considerable accuracy
across both high and low-frequency classes, allowing for a comprehensive overview of PHQ-9
outcomes. Upon analyzing differences between answers, those better predicted are typically
those wherein patients may find it easier to detect their emotions regarding the topic and the
frequency of  their  thoughts.  For instance,  question 9,  corresponding to  “Thoughts that  you
would be better off dead, or of hurting yourself”,  exhibits the highest classification AUC and
accuracy. Conversely, answers such as “Trouble falling or staying asleep, or sleeping too much”
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and “Feeling bad about yourself or that you are a failure or have let yourself or your family
down” yield poorer results.
Having an approximate score on this questionnaire proves to be a valuable tool, facilitating the
monitoring of  changes in  depressive  symptoms over time and guiding treatment  decisions.
Consequently,  it  can  be  employed  for  screening  purposes  to  identify  individuals  who  may
require further evaluation for depression.

Limitations

There  is  a  high  percentage  of  missing  data  in  the  passive  variables,  with  the  minimum
percentage of missing data being 52.6% (519,168/986,909) for the number of steps and the
maximum percentage being 69.47% (685,614/986,909) for time at home. Additionally, there is
a very high rate of missing data in the active variables we aim to predict, such as emotional
valence, which has 96.34% missing data (950,833/986,909). 
The  recording  of  emotions  is  slightly  imbalanced,  with  a  higher  rate  of  negative  emotions
recorded (negative: 45.83%, positive: 30.41%, neutral: 23.74%). Consequently, there is greater
sensitivity for detecting negative valence compared to neutral and positive states.
For the PHQ-9, we have limited responses (549), and they are sporadic for most of the patients.
The mean interval between two responses is 25.27 days, with a mode of 14.5 days. On average,
each patient responds 4.65 times. Thus, predicting the global score based on passive data is
challenging.

Conclusions

Our  study  has  yielded  several  key  findings.  First  and  foremost,  the  utilization  of  passive
variables has led to favorable outcomes in both emotion valence detection and change analysis.
This  underscores  the  potential  of  leveraging  passive  data  sources  for  monitoring  and
understanding emotional states.
Moreover, employing temporal methods has enabled accurate prediction of emotional states up
to  a  day  in  advance,  with  stable  results  for  subsequent  days.  This  temporal  stability  in
prediction highlights the robustness of our approach and suggests its potential applicability in
real-world settings where timely intervention is crucial. Further exploration may elucidate the
potential for extending prediction horizons beyond a single day, thereby enhancing the utility
of our method in long-term monitoring scenarios.
Furthermore,  our  model  demonstrates  promising  performance  in  predicting  PHQ-9  scores,
providing an approximate understanding derived solely from passive data. This highlights the
utility of this approach as a screening tool for identifying individuals at higher risk of having a
crisis or whose depressive symptoms are changing,  thereby enabling timely intervention or
adjustment in treatment.
Future work should focus on the interpretability of the data. This includes exploring the impact
of each variable to assess the patient’s condition, as well as the effects of removing or adding
new variables (such as heart rate, oxygen saturation, etc.). Additionally, delving deeper into the
understanding  and  extraction  of  information  from  the  time  series  could  help  identify
behavioral patterns that determine patient progression, as well as pinpoint specific moments
that are most relevant for changes in a patient’s emotional state, ultimately aiding in adapting
the treatment.
While  there  is  room  for  improvement,  particularly  in  refining  the  predictive  accuracy  and
expanding the scope of our analysis, our findings represent a significant step forward in the
development  of  in-situ  support  and  unobtrusive  monitoring  strategies  for  mental  health
disorders.
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Data preprocessing pipeline: data acquisition, obtention of the daily summaries, and standardization of behavioral data. The
sequence shown in the daily summaries displays the temporal sequence of passive data for five different patients. The intensity
of the lines indicates the amount of non-missing behavioral data the patient has for that day.
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The graphical abstract of the proposed scheme illustrates the underlying architecture, comprising three primary blocks. The first
block involves the utilization of Hidden Markov Models (HMM) to address missing data and extract posterior state
probabilities. The second block employs a transformer model equipped with an attention mechanism to facilitate pattern
recognition and time-series forecasting. Lastly, the scheme incorporates a final classification layer responsible for patient-
reported variables, namely Emotional Valence or PHQ-9 score.
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Architecture of Heterogeneous hidden Markov model. Model is described by their hidden states sequence (s0:Tn) and
continuous observations sequence (y0:Tn), discrete observations sequence (l0:Tn) [44]. In our case (l0:Tn ) corresponded to the
sequence of discrete observation: practiced sport and (y0:Tn) was the sequence of continuous observations: steps, location
distances, sleep time, app usage, time home and location clusters count.
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On the left side of the image, the simplified encoder-decoder architecture of the transformer model is shown [10]. On the right
side, an example of model training and inference is illustrated. During training, the model learns the parameters to forecast the
future state, using the real data as a reference. During inference, the transformer’s decoder is responsible for forecasting the
future state value in an autoregressive manner. The blue line shows the true states, and the orange line shows those predicted by
the model. During inference, the possible future states have associated probabilities, which are illustrated in the graph with
different colored margins around the orange line.
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Model comparison in state matches forecasting.
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Sequences of real emotions (blue) and those predicted by the model (orange) for the following day. The colored circles denote
the probability distribution of the emotional state, purple indicates state 0 (negative valence), green indicates state 1 (neutral),
and red indicates state 2 (positive valence). These figures pertain to two patients (ids: 374 and 218) selected from a set of
patients with high variability of emotion in their temporal sequence.
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JS divergence calculated in a temporal window (blue curve) and the true emotion changes (grey vertical lines) for two patient
sequences.
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Entropy calculated in a temporal window (blue curve) and the true emotion changes (grey vertical lines) for two patient
sequences.
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ROC curves for change detection with JS divergence and entropy. The curves are obtained for change detection in patients
suffering from mental disorders (mental dis.), in patients without any diagnosed mental disorders (no mental dis.), and for the
entire study cohort (global). PHQ-9 Score Forecasting.
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Multimedia Appendixes
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Data Appendix: Cohort Overview and Patient Profiles.
URL: http://asset.jmir.pub/assets/df517827c64ddbea5e02cd08625d7780.docx

Technical Appendix: Model Description and Implementation Details.
URL: http://asset.jmir.pub/assets/9af5dc96d4aa679e9f58cab739708b64.docx
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