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Abstract—One-bit sampling has emerged as a promising tech-
nique in multiple-input multiple-output (MIMO) radar systems
due to its ability to significantly reduce data volume, hardware
complexity, and power consumption. Nevertheless, current de-
tection methods have not adequately addressed the impact of
colored noise, which is frequently encountered in real scenarios.
In this paper, we present a novel detection method that accounts
for colored noise in MIMO radar systems. Specifically, we derive
Rao’s test by computing the derivative of the likelihood function
with respect to the target reflectivity parameter and the Fisher
information matrix, resulting in a detector that takes the form
of a weighted matched filter. To ensure constant false alarm
rate (CFAR), we also consider noise covariance uncertainty and
examine its effect on the probability of false alarm. The detec-
tion probability is also studied analytically. Simulation results
demonstrate that the proposed detector provides considerable
performance gains in the presence of colored noise.

Index Terms—One-bit analog-to-digital converter (ADC),
multiple-input multiple-output (MIMO) radar, Rao’s test, target
detection.

I. INTRODUCTION

Applications on small platforms, such as drones, are in-
creasingly driving the development of colocated multiple-
input multiple-output (MIMO) radar systems. These platforms
operate under stringent resource constraints, making high-
precision, high-speed sampling both costly and technically
challenging. Additionally, the large data volume generated by
traditional sampling methods pose significant challenges for
storage, transmission, and processing. One-bit quantization
addresses these issues by reducing data volume, lowering
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power consumption, and simplifying hardware requirements,
enabling effective radar sensing without compromising real-
time capabilities. As a result, one-bit radar has become an
attractive and necessary choice for modern radar systems,
leading to significant advancements in radar processing and
imaging in recent years [1]–[6].

Although one-bit sampling results in information loss, re-
cent studies have demonstrated that this can be effectively mit-
igated through advanced signal processing techniques. In some
instances, these methods can even enhance the overall system
performance, for example, through higher sampling rates [7].
Moreover, one-bit radar has proven capable of performing all
the functions of traditional high-bit radar, including direction-
of-arrival (DOA) estimation [8]–[11], range and Doppler es-
timation [12]–[15], detection [16], [17], tracking [18], and
imaging [19], [20]. Consequently, one-bit radar is emerging
as an important development direction in the radar field, with
profound implications for the design and application of future
radar systems, particularly in the context of efficient and
accurate target detection.

In practical radar signal processing, colored noise is an
unavoidable factor that introduces significant challenges com-
pared to white noise. Unlike white noise, which is uncorrelated
and typically easier to handle in detection algorithms, colored
noise exhibits correlation across time or space, complicating
the detection process. The presence of colored noise requires
more sophisticated methods, as the noise covariance matrix
is no longer diagonal, which impacts the formulation and
solution of detection problems. Ignoring the noise correlation
can lead to suboptimal detection performance, as standard
algorithms designed for white noise may fail to accurately
model the noise characteristics, resulting in increased prob-
ability of false alarm or missed detection. Despite these
challenges, addressing colored noise is crucial for enhancing
the applicability and robustness of radar detection systems in
real-world scenarios.

However, most current research on one-bit radar operates
under the assumption of white noise, which is often unrealistic
in practice [24]–[33]. This discrepancy arises because, in the
presence of colored noise, the likelihood function is described
by central/non-central orthant probabilities, which lack closed-
form expressions. Although these probabilities can be evalu-
ated numerically using fast algorithms, they pose challenges
for detection tasks since most detection criteria, such as
the generalized likelihood ratio test (GLRT), are based on
likelihood functions. Concretely, the orthant probabilities make
it exceedingly difficult to determine the maximum likelihood
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estimate (MLE) of the target reflectivity parameter, thereby
hindering the formulation of the GLRT. In this paper, we
demonstrate that the derivative of the orthant probability with
respect to the mean value can be expressed as an orthant
probability of a lower dimension, which can also be numer-
ically evaluated. Using this property, we construct a Rao’s
test [34]–[36] to address this problem, circumventing the need
to compute the MLE.

It is important to note that Rao’s test does not need the MLE
only in scenarios where the likelihood under the null is simple,
which implies no unknown parameters [37]. Consequently,
our detector’s development is based on the assumption that
the noise covariance matrix is known. However, in practical
applications, this matrix is often estimated from noise-only
samples using, for instance, the algorithms described in [38]–
[41]. Hence, our subsequent analysis focuses on the impact
of estimation errors on the detector’s performance. Initially,
we explore how an increased false alarm rate can result
from noise covariance mismatch. Specifically, we examine
the detector’s distribution when the actual noise covariance
matrix is assumed to be at a specific mismatched value. These
results are then averaged, considering the prior distribution
of estimation errors as provided in [38], using an improved
Monte Carlo method. Employing this approach enables a more
nuanced understanding of how estimation errors, characterized
by the prior distribution, might influence the performance of
the detector.

Continuing with our analysis, we examine the detector’s
detection performance and simplify the results to a non-central
χ2 distribution. This simplification provides a clearer view of
how noise covariance mismatch affects the detection process,
particularly by decreasing the non-centrality parameter. This
reduction can be interpreted as a decrease in the “distance”
between the null and non-null distributions, which provides
valuable insights into the impact of covariance mismatch on
the overall detection performance.

Finally, our theoretical findings are validated via computer
simulations. It is shown that under realistic settings, the perfor-
mance degradation due to noise covariance mismatch is almost
negligible, especially when the number of noise-only samples
is sufficient. This is a common scenario in one-bit processing,
as the sampling rate can be significantly increased due to the
simple structure of one-bit ADCs. Additionally, the simulation
results confirm that the theoretical analysis accurately reflects
the impact of noise mismatch on the null distribution, which
allows us to adjust the threshold to maintain a constant false
alarm rate (CFAR).

The contributions of this paper are summarized as follows:
1) Development of Rao’s Test for One-Bit Target Detec-

tion in Colored Noise: This paper extends our previous
work on a white noise detector [7]. To the best of our
knowledge, this is the first study in the field of one-bit
radar processing that takes into account colored noise.
This advancement marks a significant step forward in
enhancing the applicability and accuracy of one-bit radar
systems.

2) Accurate Characterization of Null and Non-Null
Distributions: We derive accurate expressions for the

null and non-null distributions of the detector, which
are crucial for accurately predicting the false alarm and
detection probabilities. More importantly, they provide a
deeper understanding of the detector’s behavior, aiding
in a more informed and nuanced approach to radar
detection challenges.

3) Analysis of Noise Covariance Matrix Mismatch Im-
pact: We conduct an in-depth study of how discrepan-
cies in the noise covariance matrix influence detection
performance, including its impact on the null distri-
bution. Our analysis reveals that the noise covariance
matrix mismatch leads to an increased false alarm rate,
necessitating adaptive threshold adjustments to preserve
the CFAR property. Additionally, by approximating the
non-null distribution by a non-central χ2 distribution, we
show that performance degradation can be quantified as
a decrease in the non-centrality parameter. This insight
provides a clear and direct understanding of how noise
covariance matrix mismatch affects system performance.

The remainder of this paper is organized as follows: Sec-
tion II presents the signal model for one-bit detection in colo-
cated MIMO radar under colored noise conditions. Section III
details the derivation of a detector based on Rao’s test. The
analysis of its null and non-null distributions is conducted in
Sections IV and V, respectively, which also study the effect
of noise mismatch. Section VI provides simulation results to
corroborate the theoretical calculations. The paper concludes
with a summary of the main findings.

Notation

Throughout this paper, we use boldface uppercase letters
for matrices and boldface lowercase letters for column vectors,
while lowercase letters denote scalar quantities. The notation
A ∈ Rp×q (Cp×q) indicates that A is a p× q real (complex)
matrix. The (i, j)th entry of A is denoted by A(i, j), and
a(i) refers to the ith entry of the vector a. The trace of A
is represented as tr(A). The function Diag(A) retrieves the
diagonal matrix of A, and diag(a) produces a diagonal matrix
with the elements of a. The superscripts (·)−1, (·)T , and
(·)H represent the matrix inverse, transpose, and Hermitian
transpose operators, respectively. The operators E[a] and V[a]
denote the expected value and variance of a, respectively,
while C[a, b] is the covariance between a and b. The symbol
∼ means “distributed as”. The terms χ2

f and χ2
f (δ

2) refer,
respectively, to the central and non-central Chi-squared distri-
butions, where f is the number of degrees of freedom (DOFs),
and δ2 is the non-centrality parameter. Finally, the operators
Re(·) and Im(·) extract the real and imaginary parts of their
arguments, ı denotes the imaginary unit, and sign(·) indicates
the sign of its argument.

II. SIGNAL MODEL

We begin by examining a colocated MIMO radar setup,
encompassing p transmit and m receive antennas. The transmit
array emits a probing signal of length n, S ∈ Cp×n, which is
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then reflected by a far-field point source. The received signal
at the input of the ADCs can be represented as:

X =
[
x1, · · · ,xn

]
= βar(ϕ)a

T
t (ϕ)S+N, (1)

where β is the target reflectivity, ϕ is the angel of interest,
at(ϕ) ∈ Cp×1 and ar(ϕ) ∈ Cm×1 are the transmit and
receive steering vectors, respectively. The term N ∈ Cm×n

denotes additive noise that is composed of n independent and
identically distributed Gaussian vectors with zero mean and
covariance matrix ΣN.

After one-bit quantization, the signal becomes

Y =
[
y1, · · · ,yn

]
= Q(X) = sign(Re(X))+ ısign(Im(X)),

(2)
where Q(·) is the complex-valued quantization function.

Our objective is to detect the presence or absence of a target
by analyzing the quantized observations Y. Hypothesis H1

means that the target is present, while hypothesis H0 implies
target absence. For the one bit measurements, the problem of
target detection boils down to

H0 : Y = Q (N) ,
H1 : Y = Q (βW +N) .

(3)

That is, we test H0 : β = 0 vs. H1 : β ̸= 0. To simplify
the derivation, we have included all known parameters into a
single term, denoted as W = ar(ϕ)a

T
t (ϕ)S.

Unlike the scenario discussed in [7], this paper delves into
a more intricate yet commonly encountered situation where
the noise is colored, implying that the covariance matrix ΣN

deviates from being a diagonal matrix. Under such circum-
stances, the likelihood function is given by the central/non-
central orthant probability, which is markedly more complex
than the Q function required in the case of white noise [7].
Consequently, there is a need to devise a new detector to
address the case of colored noise, which we develop under the
following assumptions, commonly found in the MIMO radar
target detection literature [24]–[33]:

1) The target reflectivity parameter β remains invariant
throughout the observation period. This assumption
is based on the stability of target characteristics within
short observation windows, a widely accepted premise
in signal processing, especially when target movements
are slow or the observation time is brief.

2) The columns of N are independently and identically
distributed (i.i.d.) with a complex circular Gaussian
distribution CN (0,ΣN). This implies that the noise
is temporally white but spatially correlated, which is a
common scenario in array radar detection, as discussed
in [24]–[33].

3) The covariance matrix ΣN has been estimated using
training data and is known to the receiver. In practice,
this involves collecting noise-only samples and apply-
ing parameter estimation techniques, which are widely
adopted in modern signal processing [24]–[30]. Specif-
ically, in the one-bit setting, methods for estimating the
covariance matrix have been developed in [38]–[41],
making the estimation of the noise covariance matrix
feasible. It is also important to note that, in traditional

∞-bit systems, adaptive methods can bypass the need
for training data by incorporating the estimation process
within the detector’s formulation [31]–[33]. However,
this approach is technically prohibitive in the one-bit
case, as it involves the computation of orthant probabili-
ties, which do not have closed-form expressions. Finally,
we account for the estimation error of the covariance
matrix in our performance analysis, ensuring that our
model realistically captures the potential degradation of
imperfect estimation on detection performance.

III. DETECTOR DESIGN

Since the non-central orthant probability lacks a closed-form
expression, standard criteria like the GLRT cannot be applied.
Instead, we resort to numerical methods for constructing the
detector. In this section, we demonstrate that the derivative
of the orthant probability can be represented as a lower-
dimensional orthant probability, which is computationally
tractable. This insight leads us to formulate Rao’s test as a
weighted sum of squared derivatives.

We begin by stacking the real and imaginary parts of the
received signal xi as xi =

[
Re(xi)

T , Im(xi)
T
]T

and the
quantized signal yi as y

i
=
[
Re(yi)

T , Im(yi)
T
]T

. Given the
circular nature of the noise, the covariance matrix of xi is1

Σxi
=

1

2

[
Re(ΣN) −Im(ΣN)
Im(ΣN) Re(ΣN)

]
. (4)

Defining wi = ui + ıvi, where wi is the ith column of W,
and β = a+ ıb, the mean of xi is

E[xi] = υi =

[
aui − bvi

avi + bui

]
. (5)

Additionally, the orthant probability is defined as

P (µ,Σ) =

∫ ∞

0

· · ·
∫ ∞

0

ϕk(x;µ,Σ)dx1 . . . dxk, (6)

where ϕk(x;µ,Σ) is the probability density function (PDF)
of a k-dimensional Gaussian distribution N (µ,Σ):

ϕk(x;µ,Σ) =
1

(2π)
k
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

(7)
Based on these ingredients, and similar to [42], we can write

the likelihood of the ith observation as

L(y
i
;θ) = Pr{y

i
;θ} = P (µi,Ωi) , (8)

where θ = [a, b]T encapsulates the real and imaginary com-
ponents of the unknown reflectivity β = a + ıb. The means
are µi = Ziνi, with Zi = diag(y

i
) and νi = D− 1

2υi,
where D = Diag(Σx). The matrix C = D− 1

2ΣxD
− 1

2

is the coherence matrix [45], while Ωi = ZiCZi account
for sample-specific information. Notably, µi depends on θ
via υi, whereas Ωi does not depend on θ. Considering the

1In the following, we will omit the subindex i, since Σxi
does not very

with i.
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independence between samples, the log-likelihood function
under H1 is obtained as:

L(Y;θ) =

n∑
i=1

L(y
i
;θ) =

n∑
i=1

logP (µi,Ωi), (9)

and by noting that under H0, θ = θ0 = [0, 0]T , the log-
likelihood function becomes

L(Y;θ0) =

n∑
i=1

logP (02m,Ωi), (10)

which only depends on the known covariance matrices.
Since there are no unknown parameters under H0, we

propose to use Rao’s test to address this problem, given by

TR =

(
∂L(Y;θ)

∂θ

∣∣∣∣
θ=θ0

)T

F−1(θ0)

(
∂L(Y;θ)

∂θ

∣∣∣∣
θ=θ0

)
,

(11)
where F (θ) is the Fisher information matrix (FIM):

F (θ) = E
[
∂L(Y;θ)

∂θ

∂L(Y;θ)

∂θT

]
. (12)

Denoting Pi = P (µi,Ωi), the derivatives are

∂L(Y;θ)

∂a
=

n∑
i=1

1

Pi

∂Pi

∂a
=

n∑
i=1

2m∑
j=1

1

Pi

∂Pi

∂µi(j)

∂µi(j)

∂a
(13a)

∂L(Y;θ)

∂b
=

n∑
i=1

1

Pi

∂Pi

∂b
=

n∑
i=1

2m∑
j=1

1

Pi

∂Pi

∂µi(j)

∂µi(j)

∂b
, (13b)

where the right-most derivatives are

∂µi

∂a
= ZiD

− 1
2

[
ui

vi

]
= Ziai (14a)

∂µi

∂b
= ZiD

− 1
2

[
−vi

ui

]
= Zibi. (14b)

To compute the derivative of the orthant probability with
respect to the mean values, we introduce the following lemma.

Lemma 1: For an orthant probability P (µ,Σ), the derivative
with respect to the jth element of µ is

∂P (µ,Σ)

∂µ(j)
=

1√
2πΣ(j, j)

P (ω(µ, j),R(Σ, j)), (15)

where ω(µ, j) denotes the reduced vector after removing the
jth element of µ and

R(Σ, j) = Θ(Σ, j)− 1

Σ(j, j)
rjr

T
j , (16)

where Θ(Σ, j) denotes the reduced matrix after removing the
jth row and column of Σ, Σ(i, j) is the (i, j)th element of Σ
and rj is the reduced vector after removing the jth element
of the jth column of Σ.

Proof: See Appendix A.
This lemma has demonstrated that the derivative of a k-
dimensional orthant probability can be computed from a (k−
1)-dimensional orthant probability. Consequently, it enables us
to express:

∂Pi

∂µi(j)

∣∣∣∣
θ=0

=
1√
2π

P (02m−1,R(Ωi, j)). (17)

Subsequently, the derivatives in (13) become:

∂L(Y;θ)

∂θ

∣∣∣∣
θ=0

=

[
tr(ATLP−1)
tr(BTLP−1)

]
, (18)

where the 2m× n matrices A and B are defined as:

A = [a1, · · · ,an], B = [b1, · · · ,bn], (19)

and P is the n× n diagonal matrix:

P = diag(P (02m,Ω1), · · · , P (02m,Ωn)). (20)

The 2m× n matrix L is defined as:

L =

[
Z1

∂P1

∂µ1

∣∣∣∣
θ=0

, · · · , Zn
∂Pn

∂µn

∣∣∣∣
θ=0

]
, (21)

with each element given by:

∂Pi

∂µi

∣∣∣∣
θ=0

=
1√
2π

[P (02m−1,R(Ωi, 1)),

· · · , P (02m−1,R(Ωi, 2m))]
T
. (22)

In addition, Appendix B shows that the FIM is

F(θ0) = υ2I2, (23)

where

υ2 = tr
(
∆T

1 ∆1O
−1
)
= tr

(
∆T

2 ∆2O
−1
)
, (24)

with O defined in (99), and ∆1 and ∆2 defined in (100).
As a result, Rao’s test is formulated as:

TR =
1

υ2

[
tr2(ATLP−1) + tr2(BTLP−1)

]H1

≷
H0

γ. (25)

Combining (25) with (21) and (19), it becomes clear that the
detector can be interpreted as a weighted matched filter, where
by the weights are calculated from the partial derivatives in
matrix L and the orthant probabilities in matrix P, which are
determined by the elements of the noise covariance matrix.

Remark 1: To build the detector, it is necessary to compute
22m orthant probabilities of dimension 2m to construct O and
P. We demonstrate in Appendix B that these probabilities can
be grouped into sets of four with identical values, reducing
the required calculations to 22m−2. Regarding the derivatives,
our computations involve 2mn orthant probabilities of dimen-
sion 2m − 1, which may be identical for repeated observa-
tions. Taking into account the previously discussed symmetry,
the computational load for the derivatives is minimized to
min(m22m−1, 2mñ), assuming there are ñ (≤ n) distinct
observations. Additionally, these probabilities need to be cal-
culated only once for a specific noise covariance matrix and do
not require updates unless the matrix changes. Several efficient
algorithms for evaluating orthant probabilities, as documented
in [43], [44], significantly reduce the computational burden
in detector construction, enhancing the feasibility of practical,
real-world applications.
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IV. NULL DISTRIBUTION

In this section, we delve into the null distribution of the
proposed detector TR. Initially, we consider the scenario with
perfectly known noise covariance matrix. Subsequently, we
analyze the effect on the false alarm rate when the noise
covariance matrix is known up to some estimation error. Our
study employs an improved Monte Carlo approach, which
begins with a distribution for a specific error matrix. We then
compute the average effect over the prior distribution of this
error matrix via Monte Carlo integration, leading to the null
distribution for the scenario of imperfect noise covariance
matrix estimation.

A. Distribution with Known Noise Covariance

Let us start by rewriting the test statistic as

TR = w2
1 + w2

2, (26)

where

w1 =
1

υ
tr(ATLP−1), w2 =

1

υ
tr(BTLP−1). (27)

Since the samples are i.i.d. under H0, it follows straightfor-
wardly from the central limit theorem that w1 and w2 follow
asymptotically (n → ∞) a 2-dimensional joint Gaussian
distribution. In addition, recalling that

w = [w1, w2]
T =

1

υ

[
∂L(Y;θ)

∂a
,
∂L(Y;θ)

∂b

]T
, (28)

and taking (23) into account, it is easy to show that

E[w] = 02, E[wwT ] = I2, (29)

which allows us to conclude that TR is asymptotically (n →
∞) Chi-square distributed with 2 degrees of freedom (DoFs),

TR ∼ χ2
2. (30)

That is, TR is exponentially distributed with parameter 1/2,
the probability of false alarm becomes

Pfa(γ) = Pr{TR > γ} = exp(−γ/2), (31)

and the detection threshold can be obtained as

γ = −2 log(Pfa). (32)

B. Distribution with Estimated Noise Covariance

In the preceding derivations, the noise covariance matrix
was assumed to be perfectly known to the receiver. However,
in real problems, it must be estimated beforehand using, for
instance, the algorithms in [38]–[40]. Accordingly, we need to
account for the mismatch between the true and estimated noise
covariance matrices and assess its impact. In this subsection,
the scenario where the estimated covariance matrix, Σx, and
the true covariance matrix, Σ′

x, differ is examined, aiming to
study the changes of the null distribution. We proceed with
two assumptions: 1) the true covariance matrix Σ′

x is close to
the estimate Σx, a condition that can be ensured by a sufficient
amount of (training) samples, and 2) the prior distribution of
Σ′

x given Σx is known, which was obtained in [38].

We start by analyzing the joint distribution of w1 and w2

for the estimated covariance matrix, which is given by the
following theorem.

Theorem 1: Under noise covariance mismatch, the distri-
bution of w = [w1, w2]

T can be asymptotically (n → ∞)
approximated by the real Gaussian distribution with zero mean
and covariance matrix

Σw = E[wwT ] =
υ2
1

υ2
I2, (33)

where
υ2
1 = tr

(
∆T

1 ∆1G
)
= tr

(
∆T

2 ∆2G
)
, (34)

with

G = diag

(
O′

1

O2
1

, · · · , O
′
κ

O2
κ

)
, (35)

and O′
1, · · · , O′

κ are defined in (102).
Proof: See Appendix C.

Using Theorem 1, we have

υ2

υ2
1

TR ∼ χ2
2. (36)

Therefore, the probability of false alarm can be rewritten as

Pfa(γ) = exp

(
− υ2

2υ2
1

γ

)
, (37)

and the detection threshold is

γ = −2υ2
1

υ2
log(Pfa). (38)

C. Average over Prior Distribution of Estimation Error

In this section, we proceed to average the null distribution
over the prior distribution of the estimation error. Such a prior
distribution can be derived using analytical methods detailed
in the literature, such as [38]. Assuming a known prior PDF
for Σ′

x, denoted by f(Σ′
x), the probability of false alarm can

be computed as

Pfa(γ) =

∫
Pr{TR > γ|Σ′

x}f(Σ
′
x)dΣ

′
x

=

∫
exp

(
− υ2

2υ2
1

γ

)
f(Σ′

x)dΣ
′
x. (39)

Given that evaluating υ2
1 for each Σ′

x involves computing
22m−2 orthant probabilities, which do not have a closed-
form, computing this integral directly is very challenging. To
circumvent this, we present an improved Monte Carlo method
to approximate (39). Concretely, we generate a sequence of
K covariance matrices from the prior distribution f(Σ′

x)
and approximate the false alarm probability by averaging the
outcomes as

Pfa(γ) ≈
1

K

K∑
i=1

exp

(
− υ2

2υ2
1,i

γ

)
, (40)

where υ2
1,i = tr(∆T

1 ∆1Gi) = tr(∆T
2 ∆2Gi), with

Gi = diag

(
O′

1,i

O2
1

, · · · ,
O′

κ,i

O2
κ

)
, (41)



6

and O′
j,i = P (02m,C′

j,i), with C′
j,i = ΓjC

′
iΓj , where C′

i is
the coherence matrix of the ith covariance matrix sample, and
Γj is defined in Appendix B.

Achieving an accurate approximation requires a large K,
thereby increasing computational complexity since computing
υ2
1,i, for i = 1, . . . ,K, necessitates the calculation of 22m−2

orthant probabilities. However, this process can be optimized
by using a Taylor’s expansion around Cj = ΓjCΓj , where
C is the coherence matrix of the estimated noise covariance
matrix, Σx, to approximate the orthant probabilities required
for υ2

1,i, corresponding to each Σ′
xi

. This approximation can
be formulated as:

P (02m,C′
j,i) ≈ P (02m,Cj)+

∂P (02m,C)

∂c

∣∣∣∣
c=cj

(c′j,i−cj),

(42)
where

c = vech(C) = [C(1, 2), · · · ,C(2m− 1, 2m)]T (43)

is the vectorization of the upper triangular part of C, excluding
the main diagonal, which stacks the free parameters of C in a
vector. Moreover, cj = vech(Cj) and c′j,i = vech(C′

j,i). The
partial derivative in this expression can be efficiently computed
using the following theorem.

Theorem 2: The derivative of the orthant probability
P (0k,C) with respect to the correlation coefficient C(r, s),
r < s, is

∂P (02m,C)

∂C(r, s)
=

P (0k−2, C̄)

2π
√
1− |C(r, s)|2

, (44)

where C̄ = [Θ(Θ(C−1, r), s− 1)]−1.
Proof: See Appendix D.

By employing this approach, we can avoid computing the
orthant probability for each Σ′

xi
. Instead, we only need to

compute the derivative and then generate a large number of
Σ′

xi
samples to obtain a reliable approximation to the null

distribution. Let us denote:

υ2
1,i = υ2 + υ2

△,i, (45)

where

υ2
△,i = tr

(
∆T

1 ∆1(Gi −O−1)
)
= tr

(
∆T

2 ∆2(Gi −O−1)
)
,

(46)
and

Gi −O−1 = diag

(
∆O1,i

O2
1

, · · · , ∆Oκ,i

O2
κ

)
. (47)

In this expression, ∆Oj,i = O′
j,i − Oj can be approximated

using (42) as

∆Oj,i =
∂P (02m,C)

∂c

∣∣∣∣
c=cj

(c′j,i − cj). (48)

Thus, orthant probabilities are computed only once for the
derivatives of each Cj and not for every realization of Σ′

xi
.

Subsequently, substituting (45) into (37) allows the average
probability of false alarm to be estimated as:

Pfa(γ) ≈
1

K

K∑
i=1

exp

− υ2

2
(
υ2 + υ2

△i

)γ
 . (49)

Complexity Comparison: Previously, as described in (40)
and (42), evaluating K22m−2 orthant probabilities is required
to construct (40). However, by applying Taylor’s expansion,
the number of orthant probabilities needed is reduced to a fixed
value of (m2−m)22m−1. This fixed number no longer scales
with the number of samples drawn from the prior distribution
of covariance matrix estimation errors. Consequently, we can
achieve high approximation accuracy with a large number of
samples. Additionally, this sampling can be directly applied to
the shrinkage factor in (49), eliminating the need to compute
the distribution for each sample. This approach significantly
accelerates the distribution computation, making the process
much more efficient.

V. NON-NULL DISTRIBUTION

In this section, the non-null distribution of the proposed
detector is examined. First, a generalized non-central χ2

distribution is introduced through the analysis of the joint dis-
tribution of w1 and w2. Afterwards, a simplified representation
is derived for the low signal-to-noise ratio (SNR) scenario
using a Taylor’s expansion, yielding a standard non-central
χ2 distribution.

A. Fundamental Result
Let us start by computing the mean and covariance matrix

of w under H1, which are presented in the following theorem.
Theorem 3: Under H1, the mean and covariance matrix of

w are

uw =
1

υ

[
tr(E1Q

T )
tr(E2Q

T )

]
, Σw =

[
σ2
1 σ12

σ12 σ2
2

]
, (50)

where El = ∆lO
−1, l = 1, 2, and Q(i, j) =

P (Γjνi,ΓjCΓj), i = 1, . . . , n, j = 1, . . . , κ. The proof of
this result, along with the definition of the elements of the
covariance matrix, is given in Appendix E.

Having obtained the mean and covariance matrix of w under
H1, we now define

Σw = PTΛP, m = PΣ
− 1

2
w uw. (51)

Then, as in [7], the detector can be rewritten as

TR = λ1(ν1 +m1)
2 + λ2(ν2 +m2)

2, (52)

where Λ = diag(λ1, λ2), m = [m1,m2]
T , and ν1, ν2 are

mutually independent standard Gaussian random variables.
Thus, the detection probability of TR is given by a general
non-central χ2 distribution:

TR =

2∑
l=1

λlχ
2
1(m

2
l ), (53)

which can be numerically evaluated [46].
It is easily proved that in the case of a mismatched noise

covariance matrix, the result is adjusted by substituting Q with
Q′, which is defined as follows:

Q′(i, j) = P (Γjν
′
i,ΓjC

′Γj), (54)

Here, C′ represents the coherence matrix corresponding to the
mismatched covariance matrix Σ′

x and ν′
i = diag(Σ′

x)
− 1

2υi

characterizes the changes in the mean due to the covariance
mismatch.
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B. Low-SNR Approximation

Despite its near-exact nature, the aforementioned approxi-
mation requires the computation of the orthant probability for
all n samples. Moreover, it does not allow for an insightful
comparison between matched and mismatched cases. Thus, in
this subsection, a simplified approximation is presented for the
low-SNR regime via a Taylor’s approximation, which avoids
additional orthant probability computations and allows for the
aforementioned comparison. The derived result is presented in
the following theorem.

Theorem 4: In the low-SNR regime, where |β| = O(n− 1
2 ),

the mean and covariance matrix of vector w for the matched
noise covariance case are:

uw = υ

[
a
b

]
+O(n− 1

2 ), Σw = I2 +O(n− 1
2 ). (55)

Furthermore, for the mismatched noise covariance case, they
become

uw =
1

υ

[
aς11+bς12
aς21+bς22

]
+O(n− 1

2 ), Σw =
υ2
1

υ2
I2+O(n− 1

2 ),

(56)

where ςij = tr
(
∆T

i ∆
′
jO

−1
)
, i, j = 1, 2.

Proof: See Appendix F.
Taking this result into account, it is straightforward to show

for the matched case that

TR ∼ χ2
2(δ

2), (57)

where δ2 = υ2|β|2. For the mismatched noise covariance
matrix, the approximation yields

υ2

υ2
1

TR ∼ χ2
2(δ

′2), (58)

where δ′2 = (a2ς41 + b2ς42 )/υ
2
1 .

Combined with (30) and (36), we can see that the detection
power is determined by the non-centrality parameters δ2 and
δ′2. A direct comparison shows that the noise covariance
mismatch has caused the detection performance to decrease
from δ2 to δ′2.

Remark 2: It is worth mentioning that the above results
can also be applied to scenarios where the signal matrix W is
mismatched due to factors such as steering vector inaccuracies
or mismatches in the signal waveform, which are common in
practical scenarios. Our analysis, which considers inaccuracies
in the diagonal elements of the noise covariance matrix, can
be equivalently modeled as errors in W and thus is applicable
to address such mismatches as well. This extension provides
additional insight into the effect of signal parameter mismatch
on detection performance, allowing for potential optimization
of the waveform to either improve robustness or enhance
mismatch discrimination capabilities, depending on the desired
application.

C. Performance Loss

Building on the results above, we can now compare the
detection performance of a one-bit system with that of an ∞-
bit system. In the latter, the detector is known as the gener-
alized matched filter, whose performance has been analyzed

in [37, (Section 4.4.1)] for the real-valued case. Extending
this analysis to the complex circular Gaussian noise case, the
distributions under the two hypotheses are:

T∞ = |tr(WHΣ−1
N X)|2 ∼

{
χ2
2, under H0,

χ2
2(δ

2
∞), under H1,

(59)

where δ2∞ = |β|2tr2(W′Σ−1
N W). Consequently, the perfor-

mance loss can be measured by the reduction in the non-
centrality parameter, quantified as:

δ2∞
δ2

=
tr2(W′Σ−1

N W)

υ2
. (60)

It is well known that in the case of white noise, the
performance loss can be easily calculated as π/2 ≈ 1.96 dB
[7]. However, in the presence of colored noise, the calculation
of υ2 becomes significantly more complex and does not
have a straightforward form, making it difficult to directly
compare with the numerator. Therefore, we choose to study
this relationship numerically to quantify the performance as a
function of noise correlation, which will be presented in the
numerical simulations.

VI. NUMERICAL RESULTS

In this section, we conduct numerical simulations to validate
our theoretical findings. Initially, we evaluate the accuracy
of the derived theoretical null distribution in both matched
and mismatched scenarios. Subsequently, we examine the
accuracy of the derived theoretical non-null distributions in
both scenarios, along with their low-SNR approximations.
Finally, we compare the detection performance of the proposed
detector, using the receiver operating characteristics (ROC)
curve, with the existing one-bit white noise detector proposed
in [7].

We examine a colocated MIMO radar system equipped
with a uniform linear array, with inter-element spacing set to
half the wavelength. The system parameters are configured
as m = p = 4, n = 2000, and the direction-of-arrival
(DOA) θ is set to 30◦. Similar to [47], [48], we employ an
orthogonal linear frequency modulation (LFM) waveform for
transmission, directed at angle θ:

S(k, l) =
exp

{
ı
n [2π(l − 1) + π(l − 1)2 + (k − 1) sin(θ)]

}
√
p

,

(61)
where k = 1, . . . , p and l = 1, . . . , n.

The noise covariance matrix is constructed as

ΣN =
αHHH + Im

tr(αHHH + Im)/m
. (62)

where H ∈ Cm×m has i.i.d. elements drawn from a standard
complex-valued Gaussian distribution, and α is a scaling
factor used to modulate the correlation coefficients. In this
simulation, we set α = 1. In the scenario where noise
covariance matrix estimation error is present, the true noise
covariance matrix is expressed as

Σ′
N = ΣN +∆ΣN. (63)
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where ΣN is the one used in the formulation of the detector.
The perturbation matrix ∆ΣN is generated as a Hermitian
matrix, with its lower triangular elements drawn from a normal
distribution N (0m2 , ρ2Im2), where ρ2 acts as a scaling factor
quantifying the level of error in the covariance matrix, which,
in practice, is proportional to the inverse of the length of the
training sequence. For instance, for a training sequence of
length 1000, it is reasonable to assume ρ2 < 0.001, according
to the analysis in [38]. To ensure that the generated covariance
matrix Σ′

N remains positive definite, we exclude rare instances
where Σ′

N is not positive definite from the simulation.
A target with a constant reflectivity parameter is assumed.

Specifically, β is an unknown value whose phase is uniformly
distributed on the interval [0, 2π) and its amplitude is set
according to the SNR, defined as:

SNR = 10 log10

(
p|β|2

tr(ΣN)

)
. (64)

A. Null Distribution

Initially, we examine a scenario where the true covariance
matrix is assumed to be a specific value, essentially consider-
ing one realization of (63). Fig. 1(a) illustrates the probability
of false alarms for varying threshold in an experiment char-
acterized by mismatch levels ρ = [0, 0.05, 0.1] (curves are
ordered from left to right). Note that we chose relatively large
ρ values in this figure to make the curves more distinguishable,
whereas in realistic conditions, smaller values (e.g., ρ ≤ 0.03)
are more typical. For the no-mismatch case (ρ = 0), we
compare the false alarm probability derived from Monte Carlo
simulations with the theoretical one in (31). As depicted in
the leftmost curve of the figure, there is an almost perfect
alignment between the theoretical predictions and simulation
results. This congruence holds true even in the presence of
mismatched noise covariance matrices (ρ ̸= 0), demonstrating
the accuracy of (37).

Subsequently, we evaluate our method’s precision for com-
puting the average probability of false alarms. In this approach,
ΣN is not fixed but generated from K = 1000 samples
according to (63), and the proposed approximation in (49) is
used. Using the same parameters as in the previous experiment,
Fig. 1(b) clearly validates the theoretical approximation’s
precision in (49). Moreover, the advantage of (49) lies in its
computational efficiency with respect to (40). This efficiency
stems from the rapid evaluation of the orthant probability
for each sample. In contrast, (40) requires computing orthant
probabilities for every sample of the noise covariance matrix
mismatch, a process that can be markedly time-intensive. As
a result, it has been omitted from the simulation.

B. Non-null Distribution

We now turn our attention to the accuracy of the derived
non-null distributions. For the matched scenario, we compare
the probability of detection obtained through Monte Carlo
simulations with that predicted by (53) and (57). It should be
noted that, in practical applications, the detection probability
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P
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(a) Fixed noise covariance matrix
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Theoretical
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(b) Random noise covariance matrix

Fig. 1. Probability of false alarm versus threshold with m = p = 4, n =
2000, and ρ = [0, 0.1, 0.2].

usually ranges in the vicinity of one. Consequently, the figures
use a linear scale for the detection probability, in contrast to the
logarithmic scale used for the false alarm rate. Fig. 2(a) shows
these values for an experiment with SNR = [−30,−25,−20]
dBs (from left to right), which confirms the accuracy of the
theoretical results. Fig. 2(b) considers a mismatched scenario,
with ρ = 0.1, and the angle used in the waveform parameter
W is set as ϕ′ = 35◦. Correspondingly, (54) and (58) are
used as theoretical counterparts for comparison.. Again, this
analysis reveals a high degree of agreement between our
theoretical findings and the corresponding simulations.

Additionally, Table I measures the approximation errors for
(53) and (54), as well as for the low-SNR approximations,
given by (57) and (58). The approximation errors are computed
using the Cramér-von Mises goodness-of-fit criterion [49]:

ϵ =
1

Q

K∑
i=1

∣∣∣F (ci)− F̂ (ci)
∣∣∣2 , (65)

where F (ci) is the empirical cumulative distribution function
(CDF), F̂ (ci) is the proposed approximation, and Q = 2000
is the number of points sampled from the CDFs. Although the
low-SNR approximation achieves worse accuracy, it is notably
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TABLE I
ERRORS OF DIFFERENT APPROXIMATION METHODS AT DIFFERENT SNRS

Matched Mismatched

SNR −30 dB −25 dB −20 dB −30 dB −25 dB −20 dB

Eq. (53) 1.29× 10−8 7.79× 10−8 2.28× 10−8 Eq. (54) 8.09× 10−9 9.41× 10−9 5.40× 10−8

Eq. (57) 2.66× 10−8 3.25× 10−6 1.38× 10−4 Eq. (58) 4.88× 10−8 2.12× 10−6 1.16× 10−4
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(a) Matched case
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(b) Mismatched case

Fig. 2. Probability of detection versus threshold in an experiment with m =
p = 4, n = 2000, and SNR = [−30,−25,−20] dBs.

more straightforward to compute, as discussed in Section V-B,
offering a practical advantage.

C. Detection Performance

In this section, we evaluate the detection performance of the
proposed detector and compare it with the white noise one-bit
detector derived in [7]. We consider two key scenarios for this
evaluation. In the first scenario, the noise covariance matrix is
perfectly known to the receiver, and in the second, there is
a mismatch in the noise covariance matrix due to estimation
errors. For the mismatched scenario, we consider the model
described in (63) with ρ = [0.01, 0.02, 0.03]. These values

are intentionally selected to simulate moderate and significant
noise mismatches, mirroring conditions frequently encoun-
tered in real-world applications. Our simulations involve a total
of n = 2000 samples with the SNR fixed at −31 dBs.

As illustrated in Fig. 3, which shows the ROC curves,
the proposed detector shows enhanced detection performance
in comparison to the white noise detector across all the
considered levels of ρ. This finding highlights the critical role
of considering the colored nature of the noise. When ρ = 0.03,
a modest decline in detection performance is observed relative
to scenarios with known noise covariance matrix. However,
this decline is quantitatively less pronounced than typically
expected for such degree of noise mismatch. This effect is
attributed to the concurrent rightward shifts in both the null
and non-null distributions caused by noise mismatches, as
discussed in previous sections, which mitigates the extent of
performance degradation. These results imply that at lower
mismatch levels (ρ = [0.01, 0.02]), the impact on detection
performance is relatively negligible.

Furthermore, according to previous studies on one-bit co-
variance matrix estimation [38], estimation errors are often
even lower than ρ = 0.02, thereby supporting the reliability
of the proposed detection method in practical scenarios where
noise covariance matrix estimation is necessary. Nonetheless,
the statistical analysis of noise mismatch impact is still crucial
to maintain the CFAR property.

We also explore a more realistic scenario where the noise
covariance matrix is estimated using noise-only samples. For
this purpose, the observation interval is divided into two win-
dows. The first window collects n1 noise-only samples, which
are used for the estimation of the noise covariance matrix
using the algorithm presented in [38]. The signal transmission,
of length n2, then occurs in the subsequent phase. Since,
contrary to the proposed detector, the white noise detector
does not use the noise covariance matrix, we exclude the
training phase for this detector, dedicating the entire interval
to signal transmission. To maintain a fair comparison, the total
transmitted power of the signal is kept constant.

In the experiments with the proposed detector, we evaluate
three configurations for the training sequence: [n1, n2] =
[500, 1500], [1000, 1000], and [1500, 500]. These configura-
tions are chosen to assess the impact of varying lengths of
the training sequence on the detection performance. As shown
in Fig. 4, the proposed detector consistently outperforms the
white noise detector. Furthermore, the performance curve for
all [n1, n2] settings closely mirrors that of the scenario with
perfectly known noise covariance. This observation confirms
that the current estimation approach yields sufficiently precise
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covariance matrix information, thereby ensuring the robust
performance of our detection method. Hence, the effectiveness
of the proposed detector in real-world scenarios, where noise
covariance estimation is crucial, is underscored by this result.

10−3 10−2 10−1 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

P
d

Known Covariance
ρ=0.01
ρ=0.02
ρ=0.03
White noise detector

Fig. 3. Detection performance under mismatched noise covariance.
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Fig. 4. Impact of training sequence length on detection performance.

D. Performance Loss

In this subsection, we conduct a numerical illustration of the
performance loss computed by (60). We consider noise with
different correlation levels controlled by α through (62), where
α linearly grows from 0 to 1 and only one H is generated
for all trials. In Fig. 5, we plot the performance loss (in dB)
as a function of the noise correlation level. To quantify the
noise correlation level, we use the determinant of the noise
covariance matrix, a well-established measure of correlation
in covariance matrices, i.e., NL (dBs) = −10 · log10(|ΣN|).
The results, depicted in Fig. 5, show that starting from 1.96
dB in the case of uncorrelated noise, the performance loss
increases gradually with increasing noise correlation. This
finding suggests that in the presence of colored noise, the
performance degradation of one-bit systems does increase, but
not drastically so.

In addition, while one-bit sampling experiences perfor-
mance loss under the same system settings, it significantly re-
duces the total data volume. For scenarios where data volume
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Fig. 5. Performance loss versus noise correlation level.

is a constraint—such as in small platform radars that need to
transmit raw data to a ground station for processing—one-bit
sampling can actually achieve a performance gain by allowing
for a larger number of samples under the same data volume
constraint. For instance, compared with 16-bit systems, one-
bit sampling offers approximately a 10 · log10(16) ≈ 12dB
performance gain, which helps offset the previously mentioned
performance loss, making it competitive in such scenarios.

VII. CONCLUSION

In this study, we derived a novel Rao’s test for one-bit target
detection in MIMO radar systems operating in colored noise
environments, generalizing our prior work [7]. The detector is
designed as a weighted matched filter, with weights derived
from orthant probabilities tied to noise covariance matrix
elements. This approach shows enhanced robustness and sig-
nificant performance gains in colored noise scenarios com-
pared to the white noise detector [7]. Through comprehensive
theoretical analysis, we obtained closed-form approximations
for both the null and non-null distributions, enabling accurate
calculations of false alarm and detection probabilities. We
also assessed the impact of noise covariance matrix mismatch,
highlighting how it increases the false alarm probability and
providing the necessary adjustments to maintain the CFAR
property. The analysis of the non-null distribution revealed
that performance degradation due to covariance mismatch can
be quantified by a decrease in the non-centrality parameter
of a chi-squared distribution. Simulation results confirmed
the effectiveness and practical applicability of the proposed
detector in realistic radar detection scenarios.

APPENDIX A
PROOF OF LEMMA 1

We consider µ1 as an example, as any other derivative can
be obtained by a simple permutation of the components of the
vector. First, we define the PDF of a zero-mean Gaussian

f(x1, · · · , xk) = ϕk(x;0k,Σ), (66)
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and rewrite (6) as

P (µ,Σ) =

∫ µ1

−∞

∫ µ2

−∞
· · ·
∫ µk

−∞
f(x1, · · · , xk)dx1 · · · dxk.

(67)
Taking into account the definition of the partial derivative

of P with respect to µ1, given by

∂P

∂µ1
= lim

∆µ1→0

P (µ+∆µ1e1,Σ)− P (µ,Σ)

∆µ1
, (68)

where e1 = [1, 0, · · · , 0]T , we get

∂P

∂µ1
= lim

∆µ1→0

∫ µ1+∆µ1

µ1

∫ µ2

−∞ · · ·
∫ µk

−∞ f(x1, · · · , xk)dx1 · · · dxk

∆µ1

=

∫ µ2

−∞
· · ·
∫ µk

−∞
f(µ1, x2, · · · , xk)dx2 · · · dxk. (69)

Now, using Bayes’s theorem to decompose the joint PDF, the
derivative becomes
∂P

∂µ1
= fx1

(µ1)

∫ µ2

−∞
· · ·
∫ µk

−∞
f(x2, · · · , xk|x1 = µ1)dx2 · · · dxk

= fx1
(µ1)P (ω(µ, 1),R(Σ, 1)), (70)

where ω(µ, j) and R(Σ, j) are defined in the lemma. The
proof follows from

fx1
(µ1) =

1√
2πΣ(1, 1)

. (71)

APPENDIX B
PROOF OF (23)

Firstly, we arrange all possibilities for y in ascending order
of their binary forms:

τ 1 = [−1, · · · ,−1,−1]T (72a)

τ 2 = [−1, · · · ,−1,+1]T (72b)
...

τκ = [+1, · · · ,+1,+1]T (72c)

where κ = 22m. We define Γj = diag(τ j), and set

Oj = Pr{y = τ j |H0} = P (0,ΓjCΓj) = P (0,Cj), (73)

and
dj = Γj

∂P (µ,Cj)

∂µ

∣∣∣∣
µ=02m

, (74)

where the partial derivative of P (µ,Cj) is defined analo-
gously to (22). We first consider the first order statistic:

E

[
∂L(y

i
;θ)

∂a

∣∣∣∣∣
θ=θ0

]
=

κ∑
j=1

Oj
aTi dj

Oj
= aTi d̄, (75)

where d̄ =
∑κ

j=1 dj .
We proceed to prove that d̄ = 0. Defining j∗ as the index

such that Γj∗ = −Γj , and given ΓjCΓj = Γj∗CΓj∗ , it
is straightforward to prove that dj = −dj∗ . Since the map
between j and j∗ is unique, we can conclude that d̄ = 0,
resulting in:

E

[
∂L(y

i
;θ)

∂a

∣∣∣∣∣
θ=θ0

]
= 0. (76)

Similarly, the expectation of the derivative of the log-
likelihood function with respect to b is 0.

Now, we study the second order statistics. Using (13) and
(14), we obtain

E

(∂L(y
i
;θ)

∂a

)2
∣∣∣∣∣∣
θ=θ0

= κ∑
j=1

Oj
(aTi dj)

2

O2
j

=

κ∑
j=1

(aTi dj)
2

Oj
.

(77)
Taking into account that observations are independent and
(76), this leads to

E

[(
∂L(Y;θ)

∂a

)2
∣∣∣∣∣
θ=θ0

]
=

n∑
i=1

κ∑
j=1

(aTi dj)
2

Oj
. (78)

Similarly, we have

E

[(
∂L(Y;θ)

∂b

)2
∣∣∣∣∣
θ=θ0

]
=

n∑
i=1

κ∑
j=1

(bT
i dj)

2

Oj
, (79)

E

[
∂L(Y;θ)

∂a

∂L(Y;θ)

∂b

∣∣∣∣
θ=θ0

]
=

n∑
i=1

κ∑
j=1

aTi djb
T
i dj

Oj
. (80)

We now explore the “symmetric” properties of the or-
thant probabilities {O1, · · · , Oκ} and the derivative vectors
{d1, · · · ,dκ}. Define the matrices:

T1=

[
0m Im
−Im 0m

]
,T2=

[
Im 0m

0m −Im

]
,T3=

[
0m Im
Im 0m

]
,

(81)
and let jk be the integer such that

τ jk = Tk
1τ j , k = 0, 1, 2, 3. (82)

Given the circular nature of the noise, the coherence matrix
remains invariant under the transformations:

C = TT
1 CT1 = T3T2CT2T3. (83)

Now, we study the relationships between the orthant probabil-
ities corresponding to y = τ j , y = T2τ j , and y = T3τ j . It
is easy to prove that

Pr{y = T2τ j ;θ = θ0} = P (0,T2CjT2). (84)

The transformation y = T3τ j corresponds to a reordering
of the elements in y. Correspondingly, we can reorder the
elements of the coherence matrix, which yields:

Pr{y = T3τ j ;θ = θ0} = P (0,T3CjT3). (85)

As a result,

Oj1 = Pr{y = T1τ j ;θ = θ0} = Pr{y = T2T3τ j ;θ = θ0}
= P (0,T3T2CjT2T3) = P (0,Cj) = Oj . (86)

For the derivatives dj in (74), we use the fact that

Cj1 = Γj1CΓj1 = T3ΓjCΓjT3 = T3CjT3, (87)

which correspond to a reordering of the elements in Cj .
Accordingly, we can reorder the derivative vector in the same
manner, leading to

∂P (µ,Cj1)

∂µ

∣∣∣∣
µ=02m

= T3
∂P (µ,Cj)

∂µ

∣∣∣∣
µ=02m

. (88)
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In addition, since Γj1 = T1ΓjT3, by combining (74) and
(88), we obtain

dj1 = T1dj . (89)

Furthermore, it follows from (14) that

bi = −T1ai. (90)

Using (86), (89), (90) and the fact that TT
1 T1 = I2m, it is

easy to prove that:

(aTi dj)
2

Oj
=

(bT
i dj1)

2

Oj1

. (91)

Moreover, since τ j = T4
1τ j , we can divide the set {1, · · · , κ}

into κ/4 subsets, each with elements {jk0 , jk1 , jk2 , jk3}. This
division allows us to simplify the summations in (78) and (79)
as the sum of κ/4 individual summations. For each subset, the
corresponding summation is

3∑
k=0

(aTi djk)
2

Ojk

=

3∑
k=0

(bT
i djk)

2

Ojk

. (92)

Summarizing these subsets yields
κ∑

j=1

(aTi dj)
2

Oj
=

κ∑
j=1

(bT
i dj)

2

Oj
. (93)

For the covariance term in (80), using the symmetries, we can
obtain the following relation:

aTi djb
T
i dj

Oj
= −aTi dj1b

T
i dj1

Oj1

, (94)

which yields
3∑

k=0

aTi djkb
T
i djk

Ojk

= 0. (95)

Consequently, (80) becomes
κ∑

j=1

aTi djb
T
i dj

Oj
= 0, (96)

and the FIM simplifies to

F(θ0) = υ2I2, (97)

where

υ2 =

n∑
i=1

κ∑
j=1

(aTi dj)
2

Oj
=

n∑
i=1

κ∑
j=1

(bT
i dj)

2

Oj
. (98)

Finally, by defining

O = diag (O1, · · · , Oκ) , (99)

and ∆1, ∆2 ∈ Rn×κ with elements

∆1(i, j) = aTi dj , ∆2(i, j) = bT
i dj , (100)

υ2 can be expressed as

υ2 = tr
(
∆T

1 ∆1O
−1
)
= tr

(
∆T

2 ∆2O
−1
)
. (101)

This completes the proof of (23).

APPENDIX C
PROOF OF THEOREM 1

It is straightforward to obtain the asymptotic distribution of
w and its mean, so this appendix computes the covariance
matrix. Thus, we begin by defining

O′
j = P (0,ΓjC

′Γj), (102)

where C′ is the coherence matrix of Σ′
x. Following the same

argument as in (77) in Appendix B, we have

E

(∂L(y
i
;θ)

∂a

)2
 =

κ∑
j=1

O′
j

(aTi dj)
2

O2
j

=

κ∑
j=1

(aTi dj)
2
O′

j

O2
j

.

(103)
Likewise, we compute

E

[(
∂L(Y;θ)

∂a

)2
]
=

n∑
i=1

κ∑
j=1

O′
j

(aTi dj)
2

O2
j

, (104a)

E

[(
∂L(Y;θ)

∂b

)2
]
=

n∑
i=1

κ∑
j=1

O′
j

(bT
i dj)

2

O2
j

, (104b)

E
[
∂L(Y;θ)

∂a

∂L(Y;θ)

∂b

]
=

n∑
i=1

κ∑
j=1

O′
j

aTi djb
T
i dj

O2
j

. (104c)

Once again, by employing the circularity property, it can be
shown that

O′
j = O′

jk
, k = 0, 1, 2, 3. (105)

Combining this property with (94) and (104c), we have

E
[
∂L(Y;θ)

∂a

∂L(Y;θ)

∂b

]
= 0. (106)

Analogously, we obtain

E

[(
∂L(Y;θ)

∂a

)2
]
= E

[(
∂L(Y;θ)

∂b

)2
]
= υ2

1 , (107)

where υ2
1 , i.e., the variance in the mismatched case, is defined

in (34). Consequently, the covariance matrix of w = [w1, w2]
T

is

Σw =
υ2
1

υ2
I2, (108)

which completes the proof of Theorem 1.

APPENDIX D
PROOF OF THEOREM 2

The proof of Theorem 2 is based on Price’s Theorem [50],
which is summarized in the following lemma. For clarity, we
present its simplified version.

Lemma 2: Let x = [x1, · · · , xk]
T be a k-dimensional

vector following a zero-mean Gaussian distribution with unit
variances and coherence matrix C. Consider k nonlinear
functions gi(x), i = 1, 2, . . . , k, and define the kth order
correlation coefficient of the outputs as

R = E

[
k∏

i=1

gi(xi)

]
. (109)
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Then, the partial derivative of R with respect to the elements
of the coherence matrix C is given by

∂R

∂C(r, s)
= E

g′r (xr) g
′
s (xs)

k∏
i=1
i ̸=r,s

gi(xi)

 , (110)

where g′i (xi) is the derivative of gi (xi) with respect to xi and
r < s.

To proceed, we define

gi(x) =

{
1, x ≥ 0,

0, x < 0,
(111)

for i = 1, . . . , k, which yields

E

[
k∏

i=1

gi(xi)

]
= Pr{x1 > 0, · · · , xk > 0} = P (0k,C).

(112)
In addition, we have

g′r(xr)g
′
s(xs) = δ(xr)δ(xs), (113)

where δ(·) is the Dirac delta function. Therefore, Lemma 2
allows us to write the derivative of the orthant probability as

∂P (0k,C)

∂C(r, s)
= E

δ(xr)δ(xs)

k∏
i=1
i ̸=r,s

gi(xi)


=

∫ ∞

−∞
· · ·
∫ ∞

−∞
δ(xr)δ(xs)

k∏
i=1
i ̸=r,s

gi(xi)fx(x)dx. (114)

Denoting x̄ as the remaining vector after removing xr and
xs from x, we can write fx(x) = fx̄(x̄|xr, xs)fxr,xs

(xr, xs),
which yields

∂P (0k,C)

∂C(r, s)
= fxr,xs

(0, 0)

×
∫ ∞

0

· · ·
∫ ∞

0

fx̄(x̄|0, 0)dx̄. (115)

According to the conditional distribution of a multivariate
Gaussian distribution [51], x̄ conditioned on xr = xs = 0
is a zero mean Gaussian vector with covariance matrix

C̄ = [Θ(Θ(C−1, r), s− 1)]−1. (116)

Therefore, we obtain∫ ∞

0

· · ·
∫ ∞

0

fx̄(x̄|0, 0)dx̄ = P (0k−2, C̄), (117)

and taking into account that

fxr,xs
(0, 0) =

1

2π
√

1− |C(r, s)|2
, (118)

the derivative becomes

∂P (0k,C)

∂C(r, s)
=

P (0k−2, C̄)

2π
√
1− |C(r, s)|2

, (119)

which completes the proof of Theorem 2.

APPENDIX E
PROOF OF THEOREM 3

The definition of the expectation allows us to write

E

[
∂L(y

i
;θ)

∂a

]
=

κ∑
j=1

Q(i, j)
aTi dj

Oj
, (120)

and taking into account the independence of the observations,
we get

µw(1) =
1

υ
E
[
∂L(Y;θ)

∂a

]
=

1

υ

n∑
i=1

κ∑
j=1

Q(i, j)
aTi dj

Oj

=
1

υ
tr(E1Q

T ). (121)

Similarly, we have

µw(2) =
1

υ
E
[
∂L(Y;θ)

∂b

]
=

1

υ
tr(E2Q

T ). (122)

Furthermore, the variance of w1 is

σ2
1 =

1

υ2
V
[
∂L(Y;θ)}

∂a

]
=

1

υ2

n∑
i=1

V

[
∂L(y

i
;θ)

∂a

]
, (123)

where each of the n variances on the right-hand-side of the
above expression can be obtained as

V

[
∂L(y

i
;θ)

∂a

]
=

κ∑
j=1

Q(i, j)
(aTi dj)

2

O2
j

−

 κ∑
j=1

Q(i, j)
aTi dj

Oj

2

. (124)

Plugging (124) into (123) yields

σ2
1 =

1

υ2

n∑
i=1

κ∑
j=1

Q(i, j)
(aTi dj)

2

O2
j

− 1

υ2

n∑
i=1

 κ∑
j=1

Q(i, j)
aTi dj

Oj

2

. (125)

Similarly, we have

σ2
2 =

1

υ2

n∑
i=1

κ∑
j=1

Q(i, j)
(bT

i dj)
2

O2
j

− 1

υ2

n∑
i=1

 κ∑
j=1

Q(i, j)
bT
i dj

Oj

2

, (126)

and

σ12 =
1

υ2

n∑
i=1

κ∑
j=1

Q(i, j)
aTi djb

T
i dj

O2
j

− 1

υ2

n∑
i=1

 κ∑
j=1

Q(i, j)
aTi dj

Oj

×

 κ∑
j=1

Q(i, j)
bT
i dj

Oj

 .

(127)
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APPENDIX F
PROOF OF (55) AND (56)

We begin with the case of matched noise covariance. Given
that β is assumed to be of order O(n− 1

2 ), it can be expressed
as β = 1√

n
(a0 + ıb0). Under such circumstances, a first-order

Taylor’s expansion of Q(i, j) at [a, b]T = [0, 0]T yields

Q(i, j) = Oj +
1√
n

[
a0

∂Q(i, j)

∂a

∣∣∣∣
a=0

+ b0
∂Q(i, j)

∂b

∣∣∣∣
b=0

]
+O(n−1). (128)

Taking into account (17), the derivatives are:

∂Q(i, j)

∂a

∣∣∣∣
a=0

= aTi dj = ∆1(i, j), (129a)

∂Q(i, j)

∂b

∣∣∣∣
b=0

= bT
i dj = ∆2(i, j), (129b)

which yields

Q = 1no
T +

1√
n
(a0∆1 + b0∆2) +O(n−1). (130)

where o = [O1, · · · , Oκ]
T . Since E1 = ∆1O

−1, it can be
shown that

uw(1) =
1

υ
tr(E1Q

T )

=
1T
n∆11κ

υ
+

1√
nυ

[
a0tr

(
∆T

1 ∆1O
−1
)

+b0tr
(
∆T

2 ∆1O
−1
)]

+O(n− 1
2 ). (131)

Using (100), we have

1T
n∆11κ =

n∑
i=1

κ∑
j=1

aTi dj =

(
n∑

i=1

aTi

) κ∑
j=1

dj

 , (132)

and recalling that
κ∑

j=1

dj = d̄ = 0, (133)

we get 1T
n∆11κ = 0. Moreover, as shown in Appendix B,

tr(∆T
1 ∆2O

−1) = 0 and tr(∆T
1 ∆1O

−1) = tr(∆T
2 ∆2O

−1) =
υ2. Thus, we have

uw(1) =
υa0√
n

+O(n− 1
2 ), (134)

and similarly,

uw(2) =
υb0√
n
+O(n− 1

2 ). (135)

For the covariance matrix, using (125), the variance σ2
1 is

σ2
1 =

1

υ2
E

[(
∂L(Y;θ)

∂a

)2
]
− [uw(1)]

2

= 1 +
1√
nυ2

n∑
i=1

κ∑
j=1

a0(a
T
i dj)

3

O2
j

+O(n−1). (136)

Similarly, σ2
2 becomes

σ2
2 = 1 +

1√
nυ2

n∑
i=1

κ∑
j=1

b0(b
T
i dj)

3

O2
j

+O(n−1), (137)

and the covariance σ12 is

σ12 =
1√
nυ2

n∑
i=1

κ∑
j=1

aTi djb
T
i dj

O2
j

(a0a
T
i dj + b0b

T
i dj)

+O(n−1). (138)

Given that υ2 is of order n, it follows that

Σw = I2 +O(n− 1
2 ). (139)

For the mismatched case where the true noise covariance
matrix is Σ′

x, we define:

a′i = Diag(Σ′
x)

− 1
2

[
ui

vi

]
, (140a)

b′
i = Diag(Σ′

x)
− 1

2

[
−vi

ui

]
, (140b)

d′
j = Γj

∂P (µ,ΓjC
′Γj)

∂µ

∣∣∣∣
θ=θ0

. (140c)

Mirroring the arguments in the previous subsection, we obtain:

∂Q′(i, j)
∂a

∣∣∣∣
a=0

= a′Ti d′
j = ∆′

1(i, j), (141a)

∂Q′(i, j)
∂b

∣∣∣∣
b=0

= b′T
i d′

j = ∆′
2(i, j). (141b)

In addition, taking into account that tr(∆T
1 ∆

′
2O

−1) and
tr(∆T

2 ∆
′
1O

−1) are no longer 0 due to the parameter mis-
match, the expressions for uw(1) and uw(2) are:

uw(1) =
a0tr(∆T

1 ∆
′
1O

−1) + b0tr(∆T
1 ∆

′
2O

−1)√
nυ

(142a)

uw(2) =
a0tr(∆T

2 ∆
′
1O

−1) + b0tr(∆T
2 ∆

′
2O

−1)√
nυ

. (142b)

As proved in Appendix C, the covariance matrix under H0 for
the mismatched case is υ2

1

υ2 I2. Following similar arguments, we
can conclude that the covariance matrix under low SNR is:

Σw =
υ2
1

υ2
I2 +O(n− 1

2 ). (143)

This completes the proof.
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