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Abstract—Spectrum sensing for cognitive radio requires effec-
tive monitoring of wide bandwidths, which translates into high-
rate sampling. Traditional spectrum sensing methods employing
high-precision analog-to-digital converters (ADCs) result in in-
creased power consumption and expensive hardware costs. In
this paper, we explore blind spectrum sensing utilizing one-bit
ADCs. We derive a closed-form detector based on Rao’s test and
demonstrate its equivalence with the second-order eigenvalue-
moment-ratio test. Furthermore, a near-exact distribution based
on the moment-based method, and an approximate distribution
in the low signal-to-noise ratio (SNR) regime based on the
central limit theorem, are obtained. Theoretical analysis is then
performed and our results show that the performance loss of
the proposed detector is approximately 2 dB (π/2) compared
to detectors employing ∞-bit ADCs when the SNR is low. This
loss can be compensated for by using approximately 2.47 (π2/4)
times more samples. In addition, we unveil that the efficiency of
incoherent accumulation in one-bit detection is the square root
of that of coherent accumulation. Simulation results corroborate
the correctness of our theoretical calculations.

Index Terms—One-bit ADC, performance degradation, Rao’s
test, spectrum sensing.

I. INTRODUCTION

SPECTRUM sensing is a crucial prerequisite for the dy-
namic allocation of spectrum resources in cognitive radio

(CR) networks, as it is responsible for finding vacant channels
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(a.k.a. spectrum holes) [1], [2], [3], [4], [5]. In many application
scenarios, the task is to monitor wideband channels, which
translates into high-speed sampling. However, traditional spec-
trum sensing methods typically require high-precision quanti-
zation to achieve optimal performance. Such high-speed and
high-precision sampling results in large energy consumption,
which may not be practically feasible.

To address this problem, an effective method is to decrease
the quantization accuracy, particularly by using only one-bit
analog-to-digital converters (ADCs) [6]. One-bit ADCs only
require a single comparator to complete the sampling and quan-
tization process, offering advantages such as high sampling
rate, low hardware complexity, and low power consumption
compared to high-precision sampling [7], [8], [9]. For example,
at a sampling rate of 3.2 GSPS/s, an 8-bit ADC sampling
[10] requires 105mWatts while the one-bit ADC sampling [11]
consumes only 20μWatts. Furthermore, the performance loss of
one-bit radar detectors proposed in [12] is only 2 dB (π/2) at
low signal-to-noise ratios (SNRs), which can be compensated
via increasing the number of samples by a factor π/2. These
merits motivate the application of one-bit sampling techniques
to spectrum sensing.

Many one-bit detection problems assume the availability of
prior information, such as noise power, channel parameter char-
acteristics, and/or signal characteristics [9], [12], [13], [14],
[15]. However, this work focuses on one-bit spectrum sensing in
the absence of prior information, also known as blind spectrum
sensing. In this case, the probability mass function (PMF) of
the one-bit observations is the product of orthant probabilities,
which does not have a closed-form expression [16], [17], [18].
Therefore, numerical techniques are needed when designing
detectors using standard methods, e.g., generalized likelihood
ratio test (GLRT) [19]. In addition, numerical methods result in
higher computational time and costs, contradicting the original
purpose for simple spectrum sensing [20]. Therefore, a closed-
form detector is desirable.

A closed-form one-bit eigenvalue moment ratio (EMR) de-
tector, inspired by the EMR detector [21], was proposed in [22].
It was demonstrated that the one-bit EMR is 3 dB inferior to
the ∞−bit EMR. However, performance degradation of one-
bit sampling was proven to be only 2 dB when the SNR is
low [23]. The result has been further corroborated in one-bit
detection by [12], [19], and other one-bit signal processing
problems by [24], [25], [26], [27], [28], [29]. The increased
performance loss is due to the fact that the one-bit EMR is
obtained by initially stacking the real and imaginary parts of the
one-bit complex observations, followed by computing the EMR
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of the corresponding real-valued covariance matrix, neglecting
the circularity property of the unquantized signals.

In this paper, we formulate a detector for one-bit observations
following the rule of Rao’s test and taking into account the
circularity property to enhance performance. The result turns
out to be the second-order EMR of the one-bit complex-valued
sample covariance matrix, rather than the expanded real-valued
covariance matrix as presented in [22].

To verify the 2 dB loss, we analyze the performance degra-
dation by comparing the proposed one-bit Rao’s test with its
∞-bit counterpart. To enable such a comparison, we derive
approximate distributions of the proposed detector under only
noise and low SNRs, which yield results that can be compared
to the asymptotic distribution derived in [30]. In particular,
the null distribution follows the same χ2 distribution, while
the non-null distributions in the low SNRs are all non-central
χ2 distributions, albeit with different non-centrality parame-
ters. By examining the non-centrality parameters, we can ef-
fectively quantify the performance degradation. In higher SNR
scenarios, where the approximation breaks, a near-exact Beta-
approximation using the moment-based method [3], [4], [5],
[31] is also provided.

The contributions of this paper are as follows:
1) We present a novel detector based on Rao’s test for blind

spectrum sensing utilizing one-bit ADCs. The proposed
detector is formulated in a closed-form manner, eliminat-
ing the need for numerical optimization. Moreover, we
demonstrate that the proposed detector is equivalent to the
second-order EMR detector (or John’s detector [32], [33])
using complex-valued one-bit observations. Our detector
outperforms the one-bit EMR detector [22], which adopts
the expanded real-valued covariance matrix.

2) We derive near-exact null and non-null distributions of
the proposed detector, enabling the calculation of false
alarm and detection probabilities. Additionally, approxi-
mate null and non-null distributions under low SNRs are
obtained, simplifying performance comparison.

3) We prove that the performance loss of the proposed de-
tector in low SNR environments is approximately 2 dB
(π/2) compared to the detector using ∞-bit ADCs, which
is smaller than the 3 dB performance loss reported in [22].
Moreover, this loss can be compensated for by increasing
the number of samples of our detector by a factor of
approximately 2.47 (π2/4).

4) Upon comparison with the findings in [12], we arrive
at an intriguing conclusion: The efficiency of coherent
accumulation in one-bit detection is the square of that of
non-coherent accumulation.

The structure of this paper is organized as follows. Section II
presents the signal model for one-bit blind spectrum sensing.
In Section III, a detector based on Rao’s test is derived. The
null and non-null distributions of the proposed detector are
analyzed in Section IV. Section V examines the performance
degradation when using one-bit ADCs in comparison to
∞-bit ADCs. Simulation results are provided in Section VI to
validate the theoretical calculations. Finally, Section VII offers
a summary of the main conclusions.

Notation

Throughout this paper, we use boldface uppercase letters for
matrices, boldface lowercase letters for column vectors, and
light face lowercase letters for scalar quantities. The notation
A ∈ R

p×q (Cp×q) indicates that A is a p× q real (complex)
matrix. The diag(a) represents a diagonal matrix whose di-
agonal elements are the same as those of a, while Diag(A)
represents a diagonal matrix whose diagonal elements are the
same as those of the diagonal elements of A. The operator || · ||
represents the Frobenius norm when its argument is a matrix,
and the �2 norm when its argument is a vector. The trace of
A is tr(A). The superscripts (·)−1, (·)T , and (·)H represent
matrix inverse, transpose, and Hermitian transpose operations.
Ia is the a× a identity matrix. The operator E[a] denotes the
expected value and ∼ means “distributed as.” The central and
non-central Chi-squared distributions are denoted by χ2

k and
χ2
k(δ

2), respectively, where k is the number of degrees-of-
freedom (DOFs) and δ2 is the non-centrality parameter. Finally,
the operators Re(·) and Im(·) extract the real and imaginary
parts of their arguments, ı is the imaginary unit, and sign(·)
takes the sign of its argument.

II. SIGNAL MODEL

Consider a multiple-input multiple-output CR network where
there are p single-antenna primary users (PUs) and m receiving
antennas at the secondary user (SU). The input of the one-bit
ADCs, x(t), t= 1, · · · , n, under H0 (signal absence) and H1

(signal presence) are given by [34], [35], [36]:

H0 : x(t) =w(t),

H1 : x(t) =Hs(t) +w(t), (1)

where H ∈ C
m×p represents the unknown and deterministic

channel coefficient during the sensing period. Here, s(t) =
[s1(t), · · · , sp(t)]T and w(t) = [w1(t), · · · , wm(t)]

T are the
signal vector and the noise vector. In addition, the noise vec-
tor w(t) = [w1(t), · · · , wm(t)]

T follows i.i.d. zero mean cir-
cular symmetric complex Gaussian (ZMCSCG) distributions
with unknown covariance matrix Rw = diag(σw1 , · · · , σwm

),
respectively. It is worth noting Rw may have unequal diagonal
elements, indicating the absence of calibration at the receiver
[34], [37], [38], [39]. Moreover, the noise is assumed to be
independent of the signal.

To proceed, it is important to clarify the modeling assumption
for the signal vector s(t). Commonly, two primary assumptions
are adopted [40]: 1) deterministic and unknown vectors, as in
[41], [42], [43], and 2) Gaussian-distributed vectors, as in [3],
[4], [21], [34], [44]. Both models often yield similar or even
the same results in high-precision settings, such as the GLRT
detectors proposed in [43] and [44]. However, when using one-
bit samples, unknown deterministic models often require extra
computations, making them less suited to our objectives. There-
fore, for analytical simplicity, we model s(t) as i.i.d. ZMCSCG
distribution with an unknown covariance matrix Rs. Addition-
ally, it is worth mentioning that incorporating rank information
can improve detection performance, as evidenced by works in
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[34], [41], [43], [44]. Nevertheless, in this study, we focus on the
general case and do not impose any rank-specific constraints.

Clearly, x(t) follows the ZMCSCG distribution, which is
determined by the population covariance matrix (PCM), defined
as Rx = E

[
x(t)xH(t)

]
. Under both hypotheses, the PCM is

H0 :Rx =Rw,

H1 :Rx =HRsH
H +Rw. (2)

We examine the scenario involving uncalibrated receivers,
in which the covariance matrix Rw is diagonal but features
unequal diagonal elements. Consequently, the signal detection
problem initially stated in (2) can be reformulated as:

H0 :Rx = diag(σw1 , · · · , σwm
),

H1 :Rx �= diag(σw1 , · · · , σwm
). (3)

After one-bit quantization, the output y(t) is given by

y(t) =Q (x(t)) = sign(Re(x(t))) + ısign(Im(x(t))), (4)

where Q(·) represents the one-bit quantization operator. Under
each hypothesis, y(t) becomes

H0 : y(t) =Q(w(t))

H1 : y(t) =Q(Hs(t) +w(t)). (5)

The PMF of y(t) is given by the orthant probabilities [16].
To facilitate the computation of these orthant probabilities, we
convert the received data into a real vector by concatenating its
real and imaginary components:

ỹ(t) =
[
Re(y(t))T Im(y(t))T

]T
. (6)

A similar transformation is applied to x(t):

x̃(t) =
[
Re(x(t))T Im(x(t))T

]T
. (7)

It is established in [16] that the orthant probabilities are de-
termined only by the coherence matrix of x̃(t). Therefore, the
hypothesis testing problem simplifies to:

H0 :P= I2m,

H1 :P �= I2m, (8)

where P=Diag(Rx̃)
− 1

2 Rx̃Diag(Rx̃)
− 1

2 is the coherence ma-
trix [45] of x̃(t), and Rx̃ is the PCM of x̃(t). Given that x(t)
is circular, P can be expressed as [46]:

P=

[
Re(Px) −Im(Px)
Im(Px) Re(Px)

]

=

[
P1 P2

P3 P4

]
, (9)

where Px is the coherence matrix of x(t). By exploiting the
symmetries P1 =P4 and P2 =−P3, we effectively reduce
the number of unknown parameters in P to m2 −m. With-
out loss of generality, we can define the unknown parameter
vector θ as:

θ = [ρ1,2, · · · , ρm−1,m, ρ1+m,2, · · · , ρ2m−1,m]T , (10)

where ρij is the (i, j) element of P. The signal detection prob-
lem thus becomes:

H0 : θ = 0,

H1 : θ �= 0. (11)

Remarkably, this paper leverages the above symmetries to min-
imize the number of DOFs, thereby significantly enhancing
detection performance. This stands in contrast to the one-bit
EMR detector presented in [22], which overlooks the signal’s
circularity, resulting in an over-determined system.

III. DERIVATION OF RAO’S TEST

For problems related to detection with unknown parameters,
the GLRT is the most prevalent approach due to its asymp-
totically optimal performance and its generally good results
even with limited samples [47], [48], [49]. However, when
employing one-bit observations for detection, it often becomes
necessary to numerically address the MLE since the likelihood
function under H1 cannot be expressed in closed form. This in-
troduces a significant computational challenge. Both Wald and
Rao tests, as alternative methods to the GLRT, share the same
asymptotic performance of the GLRT [47], [49], demonstrating
satisfactory detection performance across various applications
[40], [50], [51], [52], [53], [54], [55], [56]. However, the Wald
test also requires solving the MLE under H1. Contrasting with
the first two, the Rao test circumvents the MLE solution under
H1, frequently leading to more straightforward detectors, es-
pecially when H0 is a simple hypothesis [12], [15], [47], [49].
Consequently, we opted for the Rao test in deriving our detector.

As pointed out before, to simplify the computation of the
orthant probabilities, we first arrange the real and imaginary
components of the observations as

Ỹ = [ỹ(1), · · · , ỹ(n)]. (12)

It is straightforward to show that there are 22m possible values
of ỹ, ỹκ (κ= 0, 1, · · · , 22m − 1), where ỹ is the sample popu-
lation of ỹ(t). Next, we define Xκ as the subset of R2m×1 that is
mapped to the one-bit quantization ỹκ(κ= 0, 1, · · · , 22m − 1):

Xκ = {x ∈ R
2m×1 | sign(x) = ỹκ}

= {x ∈ R
2m×1 | diag(ỹκ)x> 0}. (13)

Therefore, the probability that ỹ(t) = ỹκ is

Pr{ỹ(t) = ỹκ}= Pr{x̃ ∈ Xκ}

=

∫

Xκ

1

(2π)m |Rx̃|
1
2

e−
1
2 x̃

TR−1
x̃ x̃dx̃, (14)

where x̃ is the sample population of x̃(t). Consider a coordinate
transformation x̃→ τ̃ =Diag(Rx̃)

− 1
2 x̃. Noticing that

{τ̃ ∈ R
2m×1 | diag(ỹκ)Diag(Rx̃)

1
2 τ̃ > 0}= Xκ, (15)

and the Jacobian determinant J =
∣
∣
∣Diag(Rx̃)

1
2

∣
∣
∣, (14) can be

written as

Pr{ỹ(t) = ỹκ}=
∫

Xκ

1

(2π)m |P|
1
2

e−
1
2 τ̃

TP−1τ̃dτ̃ . (16)
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Defining the vector ζκ = diag(ỹκ)τ̃ , we have

Pr{ỹ(t) = ỹκ}=
∫ ∞

0
· · ·
∫ ∞

0

1

(2π)m |P|
1
2

e−
1
2 ζ

T
κS−1

κ ζκdζκ

=

∫ ∞

0
· · ·
∫ ∞

0

1

(2π)m |P|
1
2

e−
1
2 x

TS−1
κ xdx,

(17)

where

Sκ = diag(ỹκ)Pdiag(ỹκ). (18)

Since |Sκ|= |P|, Pr{ỹ(t) = ỹκ} can be rewritten as

Pr{ỹ(t) = ỹκ}= φ[Sκ], (19)

where

φ[Σ] =

∫ ∞

0
· · ·
∫ ∞

0

1

(2π)m |Σ|
1
2

e−
1
2 x

TΣ−1xdx, (20)

is the central orthant probability.
Therefore, the likelihood function of Ỹ is

p(Ỹ;θ) =

n∏

t=1

p(ỹ(t);θ) =

n∏

t=1

φ[S(t)], (21)

where p(ỹ(t);θ) is the PMF of ỹ(t) and

S(t) = diag(ỹ(t))Pdiag(ỹ(t)). (22)

Hence, the log-likelihood function can be expressed as

L(Ỹ;θ) =
n∑

t=1

log (φ[S(t)]) . (23)

Once we have derived the log-likelihood, the statistic of
Rao’s test is computed as

TR =

(
∂L(Ỹ;θ)

∂θ

∣
∣
∣
∣
∣
θ=θ0

)T

F−1(θ0)

(
∂L(Ỹ;θ)

∂θ

∣
∣
∣
∣
∣
θ=θ0

)

,

(24)

where θ0 = 0 ∈ R
(m2−m)×1 corresponds to the parameters un-

der H0 and F (θ) is the Fisher information matrix (FIM), which
is defined as

F(θ) = E

[
∂L(Ỹ;θ)

∂θ

∂L(Ỹ;θ)

∂θT

]

. (25)

The result of (24) is provided by the following theorem.
Theorem 1: The Rao’s test corresponding to the hypothesis

testing problem (11) is given by

TR =
n

2

m∑

i,j=1
i<j

|r̂ij |2 , (26)

where r̂ij is the (i, j) element of the complex-valued one-bit
sample covariance matrix (SCM):

R̂y =
1
n

n∑

t=1

y(t)yH(t). (27)

Proof: See Appendix A.

Hence, the detection algorithm based on Rao’s test is

TR

H1

≷
H0

γR, (28)

where γR represents the threshold.
Moreover, recall that the second-order ∞-bit EMR

detector [21] is

TEMR(R̂x) =

1
m

∥
∥
∥R̂x

∥
∥
∥

2

(
1
m tr
(
R̂x

))2

H1

≷
H0

γEMR. (29)

Here, R̂x is the SCM calculated from the unquantized samples
X= [x(1), · · · ,x(n)]. Utilizing the fact that the diagonal ele-
ments of R̂y are 2, we have

TEMR(R̂y) =
1
mn

TR + 1. (30)

This implies that the Rao’s test is equivalent to the EMR test
employing the complex-valued one-bit SCM. It is important to
note that this result is distinct from the one presented in [22].
In that study, the EMR detector is specifically employed by
submitting the expanded real-valued one-bit SCM, denoted as
R̂ỹ, into the calculation. This R̂ỹ is defined as follows:

R̂ỹ =
1
n

n∑

t=1

ỹ(t)ỹ(t)T . (31)

IV. DISTRIBUTIONS OF PROPOSED TEST

In this section, we first analyze the constant false alarm rate
(CFAR) characteristic of the proposed detector. Subsequently,
the asymptotic distributions of TR under H0 and H1 are derived.
Since TR is bounded on [0, nm(m− 1)], we can choose a Beta
distribution to approximate its distribution, after a proper nor-
malization. The approximation is conducted by first computing
the first- and second-order moments of the detector and then
matching them with that of the Beta distribution to determine
the parameters.

A. CFAR Property

We employ invariance theory to evaluate the CFAR character-
istic of the proposed detector. Consider Σ′ as a diagonal matrix
with unknown and positive diagonal elements. To establish
the CFAR property, it is essential to demonstrate two points
under H0 [40], [57]:

1) The one-bit quantization of the transformation Σ′ 1
2 x(t),

denoted as Q(Σ′ 1
2 x(t)), belongs to the same distribution

family as the original one-bit data y(t).
2) The detector processes Q(Σ′ 1

2 x(t)) to yield the same
result as with y(t).

Given that Σ′ is diagonal with positive diagonal elements,
and using sign(ax) = sign(x), for a > 0, we obtain:

Q(Σ′ 1
2 x(t)) = sign(Σ′ 1

2 Re(x(t))) + ısign(Σ′ 1
2 Im(x(t)))

= sign(Re(x(t))) + ısign(Im(x(t)))

= y(t). (32)
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This equation confirms that Q(Σ′ 1
2 x(t)) is identically equal to

y(t), implying that both share the same distribution. Addition-
ally, we have:

TR(Q(Σ′ 1
2 X)) =

n

2

m∑

i,j=1
i<j

∣
∣
∣
∣
∣

1
n

n∑

t=1

Q(σi
′xi(t))Q(σj

′xj(t))
∗

∣
∣
∣
∣
∣

2

=
n

2

m∑

i,j=1
i<j

∣
∣
∣
∣
∣

1
n

n∑

t=1

yi(t)y
∗
j (t)

∣
∣
∣
∣
∣

2

= TR(Y), (33)

where Y = [y(1), · · · ,y(n)], and (σi
′)2 is the (i, i) of the Σ′.

Recall that the expression of the one-bit EMR [22] is

TO = 1 +
1
m

2m∑

i,j=1
i<j

|r̂ỹ(i, j)|2 , (34)

where r̂ỹ(i, j) represents the (i, j) element of the expanded
real-valued one-bit SCM R̂ỹ. Let us define ỹtra(t) to represent
the expand real-valued one-bit quantization of the transform
Σ′ 1

2 x(t), given by

ỹtra(t) = [Re(Q(Σ′ 1
2 x(t)))T Im(Q(Σ′ 1

2 x(t)))T ]T . (35)

Since

R̂ỹtra =
1
n

n∑

t=1

ỹtra(t)ỹtra(t)
T =

1
n

n∑

t=1

ỹ(t)ỹ(t)T = R̂ỹ, (36)

we have

TO(Q(Σ′ 1
2 X)) = TO(Y). (37)

The derivations provided above show that the proposed
method and the one-bit EMR maintain a constant detection
threshold even when the noise variances change. Consequently,
both approaches are CFAR under conditions of noise variance
uncertainty. These CFAR characteristics are also verified with
simulations in Section VI.

B. Distribution Under H0

To project the detector to the interval of [0, 1], we define a
new statistic

T ′
R =

1
nm(m− 1)

TR, (38)

whose first and second-order moments of T ′
R under H0 are given

in the following theorem.
Theorem 2: Under H0, T ′

R has mean

μ0 =
1
n
, (39)

and variance

σ2
0 =

2(n− 1)
m(m− 1)n3

. (40)

Proof: See Appendix B.

The cumulative distribution function (CDF) of the Beta dis-
tribution is

F (x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
B(x;α, β), (41)

where the incomplete Beta function is

B(x;α, β) =

∫ x

0
zα−1(1 − z)β−1dz, (42)

and Γ(x) =
∫ +∞

0 tx−1e−t dt, for x > 0, is the Gamma func-
tion. In addition, the mean and variance of a Beta distribution
can be calculated as

μ=
α

α+ β
, σ2 =

αβ

(α+ β)2(α+ β + 1)
. (43)

Matching (43) with (39) and (40), we obtain the approxi-
mated null distribution of T ′

R:

Pr{T ′
R < γ} ≈ Γ(α0 + β0)

Γ(α0)Γ(β0)
B(γ;α0, β0), (44)

where

α0 =
nm(m− 1)− 2

2n
, (45)

β0 =
(n− 1)[nm(m− 1)− 2]

2n
. (46)

C. Distribution Under H1

Under H1, the mean and variance of T ′
R are given by the

following theorem.
Theorem 3: Under H1, the mean of T ′

R is

μ1 =
1

2m(m− 1)

m∑

i,j=1
i<j

gij , (47)

and the variance of T ′
R is

σ2
1 =

1
4m2(m− 1)2

m∑

i,j,k,l=1
i<j,k<l

(fijkl − gijkl) , (48)

where gij , fijkl, and gijkl are defined in Appendix C.
Proof: See Appendix C.

Similar to H0, the CDF of T ′
R under H1 can be approximated

by a Beta distribution as

Pr{T ′
R < γ} ≈ Γ(α1 + β1)

Γ(α1)Γ(β1)
B(γ;α1, β1), (49)

where

α1 =
μ1(μ1 − μ2

1 − σ2
1)

σ2
1

, (50)

β1 =
(1 − μ1)(μ1 − μ2

1 − σ2
1)

σ2
1

. (51)
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V. ANALYSIS OF PERFORMANCE DEGRADATION

In this section, we investigate the degradation in detection
performance when using one-bit ADCs in comparison to ∞-
bit ADCs. Note that the ∞-bit EMR belongs to the category
of sphericity tests, which consider both the independence be-
tween the random variables and the equality of their variances.
However, due to the loss of amplitude information in the one-bit
context, it becomes impossible to compare the variances. Thus,
we choose to compare our result with the locally most powerful
invariant test (LMPIT) for independence in [33]. In fact, when
the SNR is low, the diagonal entries of the covariance matrix
tend to be close to each other, resulting in the sphericity test
delivering performance very close to that of the independence
test, as demonstrated by simulations in [58].

A. ∞-Bit Case

The detection problem for ∞-bit ADCs is (3). The LMPIT
for this problem is [33]

TL = ntr

((
R̂xDiag(R̂x)

−1 − Im

)2
)

H1

≷
H0

γL, (52)

and its asymptotic distribution has been analyzed [30]:

TL ∼
{
χ2
k, under H0,

χ2
k(δ

2
∞), under H1,

(53)

where k =m2 −m and δ2
∞ = ntr[(Px − Im)2] = 2n‖θ‖2.

B. One-Bit Case

In Section IV, we exploit the Beta distribution to approxi-
mate the distribution of TR. However, it is difficult to use it to
compare with the ∞−bit detectors to analyze the performance
degradation. Therefore, we choose to derive a new approximate
distribution of TR in the low-SNR regime in terms of non-
central χ2 distribution. First, we rewrite TR as

TR = ‖r̃sc‖2
, (54)

where r̃sc =
√

n
2 r̃. Here, we remind the reader that r̃=

[
Re(r̂)T , Im(r̂)T

]T
, and r̂ is defined in (76). The asymptotic

distribution of r̃sc is presented next.
Theorem 4: In the low-SNR regime where θ is of order

O(n− 1
2 ), the random vector r̃sc asymptotically follows a multi-

dimensional real Gaussian distribution with mean

E[r̃sc] =
2
√

2n
π

θ +O(n− 1
2 ), (55)

and covariance matrix

Rr̃sc = Im2−m +O(n− 1
2 ). (56)

Proof: See Appendices D and E.
Using the above results, it is easy to conclude that

TR ∼
{
χ2
k, under H0,

χ2
k(δ

2
1), under H1,

(57)

where

δ2
1 =

8n
π2

‖θ‖2
=

4
π2

δ2
∞. (58)

Therefore, we can deduce that the performance degradation
in the low SNR is approximately 10 log10(

√
δ2
∞/δ2

1)≈ 2 dB.
Alternatively, this performance loss can be compensated by
increasing the sample support by about δ2

∞/δ2
1 = π2/4 ≈ 2.47

times more samples.
Remark 1: It is worth noting that in [12], the 2 dB loss

requires only π/2 ≈ 1.57 times more samples to compensate.
When compared with the results in this paper, it becomes ev-
ident that the efficiency of non-coherent accumulation is the
square root of that of coherent accumulation.

VI. NUMERICAL RESULTS

In this section, Monte Carlo experiments are conducted.
Firstly, we evaluate the CFAR characteristic of our detector. We
then assess the accuracy of the detector distribution that we have
derived under different SNRs. Subsequently, we compare the
performance of our detector with that of the one-bit EMR [22].
Finally, we verify our theoretical analysis by demonstrating that
the performance degradation is as low as 2 dB.

We conduct 106 Monte Carlo trials for all experiments. The
SNR is defined as:

SNR = 10 log10

(
σ̄2
s

σ̄2
w

)
. (59)

where σ̄2
s = tr(Rs)/p and σ̄2

w = tr(Rw)/m.
We further assess the distribution accuracy of our approxima-

tions through the Cramér-von Mises goodness-of-fit criterion.
This statistical measure is frequently employed to measure the
fidelity of a given distribution, especially in specialized fields
like the analysis of clutter data [59], [60], [61]. The criterion is
defined as:

ε=
1
K

K∑

i=1

∣
∣
∣F (ξi)− F̂ (ξi)

∣
∣
∣
2
, (60)

where K is the number of thresholds sampled, ξi is the ith
threshold value, and F (ξi) and F̂ (ξi) are empirical and approx-
imate CDFs, respectively.

A. Null Distribution

We first evaluate CFAR properties of proposed detector
and one-bit EMR detector [22]. We set m= 4, n= 128
and [σw1 , σw2 , σw3 , σw4 ] = [1, 1, 1, 1], [0.4, 0.8, 1.2, 1.6], and
[0.5, 0.75, 1.2, 1.5]. The results are depicted in Fig. 1. It is
worth noting that, to ensure that the one-bit EMR detector and
the proposed detector operate within a similar range, we have
scaled the one-bit EMR as T ′

O =mn(TO − 1). Fig. 1 indicates
that both our detector and the one-bit EMR detector exhibit
CFAR properties, which are consistent with the analytical re-
sults discussed in Section IV.

Then, we examine the accuracy of the null distribution of
the proposed detector. Its approximate distributions include (44)
and (57). The simulation results are plotted in Fig. 2. We set
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Fig. 1. Probability of false alarm versus threshold for m= 4, n= 128
and ‘case1’, ‘case2’, and ‘case3’ correspond to [σw1 , σw2 , σw3 , σw4 ] =
[1, 1, 1, 1], [0.4, 0.8, 1.2, 1.6], and [0.5, 0.75, 1.2, 1.5], respectively.

Fig. 2. Probability of false alarm versus threshold for m= 4 and
n= 16, 32, and 64.

m= 4 and n= 16, 32 and 64. It is worth noting that T ′
R,

defined in (38), is used, since it belongs to the interval of
[0, 1]. Simultaneously, the result in (57) is normalized by setting
γ′ = γ/[mn(m− 1)]. Fig. 2 reveals that, for n= 16, both the
Beta and χ2 distributions fit the empirical distribution well at
large values of Pfa. However, the χ2 distribution demonstrates
better fitting at small values of Pfa. As n increases, both the
Beta and χ2 distributions progressively align more closely with
the empirical distribution, reaching a satisfactory level of fit
when n= 64. This observation is further corroborated by the
approximate error in Table I, which also suggests that the Beta
distribution generally provides a better overall fit compared to
the χ2 distribution.

B. Non-Null Distribution

In this section, we investigate the accuracy of the approx-
imate non-null distribution of the proposed detector, which

TABLE I
ERRORS OF NULL DISTRIBUTION APPROXIMATIONS

m= 4

Approximation n= 16 n= 32 n= 64

(44) 1.55 × 10−5 1.91 × 10−6 2.78 × 10−7

(57) 3.61 × 10−5 4.32 × 10−6 5.69 × 10−7

Fig. 3. Probability of detection versus threshold for m= 4, p= 2 and n=
64, 128, and 256.

includes (49) and (57). The parameters are set as m= 4, p= 2,
n= 64, 128, 256, and SNR =−9 dB, 4 dB. To increase repro-
ducibility, we specify our channel matrix as:

H=

⎡

⎢
⎢
⎣

0.5282 − ı0.0658 −0.3370 − ı0.4516
0.0294 + ı0.3040 0.7462 + ı0.1550
−0.5102 − ı0.2616 −0.1954 − ı0.0563
−0.2539 − ı0.4797 0.2375 − ı0.0622

⎤

⎥
⎥
⎦ .

Fig. 3(a) demonstrates that, in the low SNR regime, both ap-
proximations effectively fit the empirical distributions. In con-
trast, Fig. 3(b) indicates that, in the high SNR regime, the
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TABLE II
ERRORS OF NON-NULL DISTRIBUTION APPROXIMATIONS AT DIFFERENT SNRS

SNR =−9 dB, m= 4, p= 2 SNR = 4 dB, m= 4, p= 2

Approximation n= 64 n= 128 n= 256 n= 64 n= 128 n= 256

(49) 1.30 × 10−6 1.99 × 10−7 2.03 × 10−8 1.92 × 10−6 4.93 × 10−7 9.23 × 10−8

(57) 2.55 × 10−6 2.56 × 10−7 5.69 × 10−8 1.60 × 10−4 4.07 × 10−4 7.91 × 10−4

Fig. 4. Empirical ROCs for m= 4, p= 2, n= 128 and SNR=−1dB.

distribution in (49) maintains a good fit with the empirical
distribution, whereas the distribution in (57) does not exhibit
a satisfactory accuracy. The asymptotic errors, as presented in
Table II, support these observations.

The reason for these differences in accuracy is that the Beta
distribution in (49) is obtained via the method of moments
without imposing restrictions on the SNR. Conversely, the non-
central χ2 distribution in (57) is derived under the assumption
of a low SNR regime, which explains its diminished accuracy
in the high SNR context.

C. Detection Performance

In this simulation, we evaluate the performance of the pro-
posed detector by comparing it with the one-bit EMR detector
outlined in [22], and specified by (34), through receiver op-
erating characteristic (ROC) curves. For this experiment, we
set the parameters as m= 4, p= 2, n= 128 and SNR=−1
dB. The channel matrix H is set as the same as previous
subsection. Moreover, we explore the impact of receiver cal-
ibration by employing two distinct sets of noise variances. In
one scenario, we uniformly assign a noise variance of 1 to all
receivers. In the alternative scenario, the noise variances are
set as [σw1 , σw2 , σw3 , σw4 ] = [0.4, 0.8, 1.2, 1.6], thereby main-
taining the total noise power constant across both cases. As
depicted in Fig. 4, our proposed method demonstrates superior
performance compared to the one-bit EMR detector. Addition-
ally, it is noteworthy that the performance of both the one-bit
EMR detector and our proposed detector remain the same in
calibrated and uncalibrated scenarios.

Fig. 5. Probability of detection versus SNR for Pfa = 10−4, m= 4 and
p= 2.

D. Performance Degradation

In this section, we analyze the performance gap between
the proposed one-bit detector and existing ∞-bit detectors. We
maintain a fixed false alarm probability of Pfa = 10−4 and
examine how the detection probabilities vary with SNR. The
parameters are set as m= 4, p= 2, and n= [128, 2048]. To
account for the potential impact of the choice of H on detec-
tion performance, a weighted evaluation approach is employed.
Specifically, during each trial, H is randomly generated through
a ZMCSCG distribution and its columns are subsequently
normalized. The results are displayed in Fig. 5. It can be
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observed that with the same number of samples, the perfor-
mance degradation of our proposed detector is less than that
of the one-bit EMR detector. In addition, Fig. 5(a) reveals that
when n is not sufficiently large, the performance gap between
our detector and the LMPIT exceeds 2 dB. Conversely, Fig.
5(b) suggests that at lower SNR values and larger n, the per-
formance degradation of our detector compared to LMPIT is
approximately 2 dB. This observation aligns with the theoretical
derivations presented in Section V. Moreover, as SNR declines,
the performance gap between our detector and the ∞-bit EMR
also narrows, although it remains slightly above 2 dB. This is
because ∞-bit EMR additionally considers the equality of noise
variances. With the loss of amplitude information in one-bit
sampling, this property no longer contributes to the detection
power, thereby slightly amplifying the performance shortfall
beyond 2 dB.

Fig. 5 further reveals that, when using 2.47n samples, the
performance curve of our proposed detector aligns exception-
ally well with that of LMPIT in both subfigures. Particularly,
in Fig. 5(a), a gap exists between the curve of our detector and
LMPIT with 2 dB shift, while the curve of the proposed detector
with 2.47n samples aligns closely with the LMPIT curve. This
underscores the pivotal role of sample size in validating the
analytical framework presented in (57) to hold.

VII. CONCLUSION

In this paper, a closed-form detector based on Rao’s test for
blind spectrum sensing utilizing one-bit observations is pro-
posed. We derive its null and non-null distributions using the
method of moments, allowing us to calculate its false alarm and
detection probabilities. Furthermore, the performance degrada-
tion of the proposed detector in comparison to the LMPIT detec-
tor using∞-bit observations is examined. Through our analysis,
we determine that the performance degradation is about 2 dB
in the low SNR regime. To compensate for this performance
degradation, the sampling number of one-bit observations can
be increased by approximately 2.47 times. Additionally, we find
that the effectiveness of non-coherent detection is the square
root of coherent detection.

As future work, this approach can be generalized to one-bit
sampling with time-varying thresholds in order to incorporate
the diagonal elements of the covariance matrix, which could
further enhance the detection performance.

APPENDIX A
PROOF OF THEOREM 1

To obtain TR, we first need to compute the partial derivative
of the log-likelihood function with respect to the unknown
parameters at θ = θ0 = 0.

Using (23), it is easy to show that

L(Ỹ;θ = 0) =

n∑

t=1

log (φ[I2m]) =

n∑

t=1

log

((
1
2

)2m
)

=−2mn log (2) . (61)

Now, we rewrite the orthant probability φ[Σ] by the coor-
dinate transformation x→ y =Eabx, where a, b= 1, · · · , 2m

and Eab is obtained by swapping ith row and jth row of
the identity matrix. It is easy to get the Jacobian determinant
J ′ = |Eab| due to E−1

ab =Eab. Since |Eab|=−1 for a= b and
|Eab|= 1 for a �= b, the absolute value of the Jacobian deter-
minant is in all cases 1. Thus, φ[Σ] can be calculated by

φ[Σ] =

∫ ∞

0
· · ·
∫ ∞

0

1

(2π)m |Σ|
1
2

e−
1
2 y

T (EabΣEab)
−1ydy.

(62)

Noticing that |EabΣEab|= |Σ|, we have

φ[Σ] = φ[EabΣEab]. (63)

Define that T1(i, j) =E4,j′E3,i′E2,jE1,i, where 1 ≤ i < j ≤
m and {i′ , j′}= {i, j}+m, using (63), we can obtain
φ[S(t)] as

φ[S(t)] = φ[T1(i, j)S(t)T
T
1 (i, j)]. (64)

For θ = θi,j , where θa,b is obtained by zeroing out the elements
of θ except ρab, T1(i, j)S(t)T

T
1 (i, j) can be expressed as

T1(i, j)S(t)T
T
1 (i, j) =

⎡

⎣
Sij(t) 0 0
0 Si′j′(t) 0
0 0 I2m−4

⎤

⎦ , (65)

where

Sab(t) =

[
1 ỹa(t)ỹb(t)ρab

ỹa(t)ỹb(t)ρab 1

]
. (66)

Substituting (65) into (64), we get that

φ[S(t)]|θ=θi,j
= φ[Sij(t)]φ[Si′j′(t)]φ[I2m−4], (67)

since the elements of Gaussian vector corresponding to differ-
ent diagonal blocks of the coherence matrix are independent.
Similarly, for θ = θi′,j , we have

φ[S(t)]|θ=θi′,j
= φ[T2(i, j)S(t)T

T
2 (i, j)]

= φ[Si′j(t)]φ[Sij′(t)]φ[I2m−4] (68)

where T2(i, j) =E4,j′E3,iE2,jE1,i′ . Moreover, each φ[Sab(t)]
is the integral in the positive quadrant of a zero-mean bi-
dimensional Gaussian with covariance matrixSab(t), which can
be calculated by [62]

φ[Sab(t)] =
1
4
+

1
2π

arcsin[ỹa(t)ỹb(t)ρab]. (69)

Therefore, we have

L(Ỹ;θ = θi,j) =
n∑

t=1

log (φ[Sij(t)]φ[Si′j′(t)]φ[I2m−4])

=

n∑

t=1

log(f1(i, j, t))− (2m− 4)n log (2) ,

(70)

and

L(Ỹ;θ = θi′,j) =

n∑

t=1

log (φ[Si′j(t)]φ[Sij′(t)]φ[I2m−4])

=

n∑

t=1

log(f2(i, j, t))− (2m− 4)n log (2) ,

(71)
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where f1 (i, j, t) and f2 (i, j, t) are

f1 (i, j, t) = φ[Sij(t)]φ[Si′j′(t)]

=

(
1
4
+

1
2π

arcsin[ỹi(t)ỹj(t)ρij ]

)

×
(

1
4
+

1
2π

arcsin[ỹi′(t)ỹj′(t)ρi′j′ ]

)

=

(
1
4
+

1
2π

ỹi(t)ỹj(t) arcsin ρij

)

×
(

1
4
+

1
2π

ỹi′(t)ỹj′(t) arcsin ρij

)
, (72)

and

f2 (i, j, t) = φ[Si′j(t)]φ[Sij′(t)]

=

(
1
4
+

1
2π

arcsin[ỹi′(t)ỹj(t)ρi′j ]

)

×
(

1
4
+

1
2π

arcsin[ỹi(t)ỹj′(t)ρij′ ]

)

=

(
1
4
+

1
2π

ỹi′(t)ỹj(t) arcsin ρi′j

)

×
(

1
4
+

1
2π

ỹi(t)ỹj′(t) arcsin(−ρi′j)

)
. (73)

Using the definition of partial derivative, it is easy to show
that

∂L(Ỹ;θ)

∂ρij

∣
∣
∣
∣
∣
θ=0

= lim
ρij→0

L(Ỹ;θ = θi,j)− L(Ỹ;θ = 0)

ρij

=
2
π

n∑

t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

=
2n
π
Re(r̂ij), (74)

and

∂L(Ỹ;θ)

∂ρi′j

∣
∣
∣
∣
∣
θ=0

= lim
ρi′j→0

L(Ỹ;θ = θi′,j)− L(Ỹ;θ = 0)

ρi′j

=
2
π

n∑

t=1

(ỹi′(t)ỹj(t)− ỹi(t)ỹj′(t))

=
2n
π
Im(r̂ij), (75)

where r̂ij is the (i, j) element of the SCM defined in (27),
and we have used L’Hôpital’s rule. Defining the vector r̂ ∈
C

(m2−m)/2×1 as

r̂= [r̂1,2, r̂1,3, r̂2,3, · · · , r̂1,m, · · · , r̂m−1,m]T , (76)

we combine (74) and (75) as

∂L(Ỹ;θ)

∂θ

∣
∣
∣
∣
∣
θ=θ0

=
2n
π
r̃, (77)

where r̃=
[
Re(r̂)T , Im(r̂)T

]T
.

Plugging (77) into (25), the FIM can be rewritten as

F(θ0) =
4n2

π2
E[r̃r̃T ]. (78)

Under H0, the PMF of Ỹ is

p(Ỹ;θ = θ0) =

(
1
2

)2mn

, (79)

allowing the computation of the expected values in (78). The
expected value of the real parts is

E[Re(r̂ij)Re(r̂kl)] = E

[
1
n

n∑

t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

× 1
n

n∑

t=1

(ỹk(t)ỹl(t) + ỹk′(t)ỹl′(t))

]

=
2
n
δikδjl, (80)

and the expected value of the imaginary parts is

E[Im(r̂ij)Im(r̂kl)] = E

[
1
n

n∑

t=1

(ỹi′(t)ỹj(t)− ỹi(t)ỹj′(t))

× 1
n

n∑

t=1

(ỹk′(t)ỹl(t)− ỹk(t)ỹl′(t))

]

=
2
n
δikδjl, (81)

while the expected value of product between real and imaginary
parts is

E[Re(r̂ij)Im(r̂kl)] = E

[
1
n

n∑

t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

× 1
n

n∑

t=1

(ỹk′(t)ỹl(t)− ỹk(t)ỹl′(t))

]

= 0, (82)

where 1 ≤ i < j ≤m, 1 ≤ k < l ≤m, and δab is the Kronecker
delta function. Thus, we have

E[r̃r̃T ] =
2
n
Im2−m, (83)

and (78) becomes

F(θ0) =
8n
π2

Im2−m. (84)

Finally, by substituting (77) and (84) into (24), the proof is
completed.

APPENDIX B
PROOF OF THEOREM 2

Since the observations at different times are independent and
ỹa(t) can only be +1 or −1, we have

E

[
n∏

t=1

2m∏

a=1

(ỹa(t))
ηat

]

=
n∏

t=1

E

[
2m∏

a=1

(ỹa(t))
mod(ηat,2)

]

, (85)

where ηat ∈ N and mod(η, 2) represents dividing η by 2 and
obtaining the remainder. Using the PMF of Ỹ under H0 in (79),
we can easily get that the elements of Ỹ are independent of each
other and

Pr{ỹa(t) = 1}= Pr{ỹa(t) =−1}= 1
2
. (86)
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Therefore, under H0, E

[∏n
t=1

∏2m
a=1(ỹa(t))

ηat

]
can be

calculated as

E

[
n∏

t=1

2m∏

a=1

(ỹa(t))
ηat

]

=

n∏

t=1

2m∏

a=1

E

[
(ỹa(t))

mod(ηat,2)
]

=

{
1, all ηat are even,
0, otherwise,

(87)

Define zij(t) = yi(t)y
∗
j (t). Using (87), we have

E[zij(t1)z
∗
ij(t2)] = 4δt1t2 , (88)

and

E[zij(t1)z
∗
ij(t2)zkl(t3)z

∗
kl(t4)]

= 16δt1t2δt3t4 + 16δikδjlδt1t4δt2t3(1 − δt1t2δt3t4), (89)

where 1 ≤ i < j ≤m, 1 ≤ k < l ≤m, 1 ≤ t1, t2, t3, t4 ≤ n.
Hence, under H0, the mean of T ′

R is

μ0 =
1

2m(m− 1)

m∑

i,j=1
i<j

E

[
|r̂ij |2

]

=
1

2m(m− 1)

m∑

i,j=1
i<j

E

⎡

⎣ 1
n2

n∑

t1,t2=1

zij(t1)z
∗
ij(t2)

⎤

⎦

=
1
n
, (90)

and its variance can be written as

σ2
0 =

1
4m2(m− 1)2

⎡

⎢
⎢
⎣

m∑

i,j,k,l=1
i<j,k<l

E
[
|r̂ij |2|r̂kl|2

]

⎤

⎥
⎥
⎦− μ2

0. (91)

To compute (91), we need to obtain

E
[
|r̂ij |2|r̂kl|2

]

= E

⎡

⎣ 1
n4

n∑

t1,t2,t3,t4=1

zij(t1)z
∗
ij(t2)zkl(t3)z

∗
kl(t4)

⎤

⎦

=
1
n4

n∑

t1,t2,t3,t4=1

E
[
zij(t1)z

∗
ij(t2)zkl(t3)z

∗
kl(t4)

]

=
1
n4

[16n2 + 16(n2 − n)δikδjl]. (92)

Substituting (90) and (92) into (91) yields

σ2
0 =

1
4m2(m− 1)2n4

m∑

i,j,k,l=1
i<j,k<l

[16n2 + 16(n2 − n)δikδjl]−
1
n2

=
2(n− 1)

m(m− 1)n3
(93)

This completes the proof of Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Under H1, by combining the closed-form solution of the
second and third-order center orthant probabilities in [62] and
(21), we have the following expected values:

hab = E[ỹa(t)ỹb(t)] =
2
π
arcsin ρab, (94)

and

habcd = E[ỹa(t)ỹb(t)ỹc(t)ỹd(t)]

= 16Pabcd − 1 − (hab + hac + had + hbc + hbd + hcd),
(95)

where 1 ≤ a �= b �= c �= d≤ 2m, and

Pabcd = Pr{x̃a(t)> 0, x̃b(t)> 0, x̃c(t)> 0, x̃d(t)> 0}.
(96)

The probability Pabcd, which is the integral in the positive
orthant of a 4-dimensional Gaussian distribution, can be com-
puted using the results in [17]. Since ρij = ρi′j′ and ρi′j =
−ρij′ , where 1 ≤ i < j ≤m, we have

hi′j′ = hij , hij′ =−hi′j . (97)

Using (85), (94), (95), and (97), we can obtain the expected
value of zij(t):

E [zij(t)] = 2(hij + ıhi′j), (98)

and those of cross-products:

E [zij(t)zkl(t)]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4hii′jj′ , i= k, j = l,
2[hii′jl′ + hii′j′l + ı(hii′jl − hii′j′l′)], i= k, j �= l,
4(hkj + ıhk′j), i= l,
4(hil + ıhi′l), j = k,
2[hjj′ik′ + hjj′i′k + ı(hjj′i′k′ − hjj′ik)], j = l, i �= k,
υ1(i, j, k, l)− υ2(i, j, k, l)
+ı[υ3(i, j, k, l) + υ4(i, j, k, l)], i �= j �= k �= l,

(99)

and

E [zij(t)z
∗
kl(t)]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4, i= k, j = l,
4(hlj + ıhl′j), i= k, j �= l,
2[hii′jk′ + hii′j′k + ı(hii′jk − hii′j′k′)], i= l,
2[hjj′il′ + hjj′i′l + ı(hjj′i′l′ − hjj′il)], j = k,
4(hik + ıhi′k), j = l, i �= k,
υ1(i, j, k, l) + υ2(i, j, k, l)
+ı[υ3(i, j, k, l)− υ4(i, j, k, l)], i �= j �= k �= l,

(100)

where 1 ≤ i < j ≤m, 1 ≤ k < l ≤m, 1 ≤ t≤ n,

υ1(i, j, k, l) = hijkl + hijk′l′ + hi′j′kl + hi′j′k′l′ , (101a)

υ2(i, j, k, l) = hi′jk′l − hi′jkl′ − hij′k′l + hij′kl′ , (101b)

υ3(i, j, k, l) = hi′jkl + hi′jk′l′ − hij′kl − hij′k′l′ , (101c)

υ4(i, j, k, l) = hijk′l − hijkl′ + hi′j′k′l − hi′j′kl′ . (101d)
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Therefore, the mean of T ′
R under H1 is

μ1 =
1

2m(m− 1)

m∑

i,j=1
i<j

E

[
|r̂ij |2

]

=
1

2m(m− 1)

m∑

i,j=1
i<j

E

⎡

⎢
⎣

1
n2

n∑

t=1

zij(t)z
∗
ij(t)

+
1
n2

n∑

t1,t2=1
t1 �=t2

zij(t1)z
∗
ij(t2)

⎤

⎥
⎥
⎦

=
1

2m(m− 1)

m∑

i,j=1
i<j

gij , (102)

where

gij =
4
n2

[
n+An,2

(
h2
ij + h2

i′j

)]
. (103)

Here, An,m = n!
m! defines the number of permutations. In addi-

tion, the variance can be computed as

σ2
1 =

1
4m2(m− 1)2

⎡

⎢
⎢
⎣

m∑

i,j,k,l=1
i<j,k<l

E
[
|r̂ij |2|r̂kl|2

]

−
m∑

i,j,k,l=1
i<j,k<l

E
[
|r̂ij |2

]
E
[
|r̂kl|2

]

⎤

⎥
⎥
⎦ . (104)

When δt1t2 + δt3t4 ≥ 1, or t1 �= t2 �= t3 �= t4, using (85), we have

E[zij(t1)z
∗
ij(t2)zkl(t3)z

∗
kl(t4)]

= E[zij(t1)z
∗
ij(t2)]E[zkl(t3)z

∗
kl(t4)]. (105)

Then, the first term in (104) can be computed as:

E
[
|r̂ij |2|r̂kl|2

]

=
1
n4

E

⎡

⎣
n∑

t1,t2,t3,t4=1

zij(t1)z
∗
ij(t2)zkl(t3)z

∗
kl(t4)

⎤

⎦

= E
[
|r̂ij |2

]
E
[
|r̂kl|2

]

+
1
n4

n∑

t1,t2,t3,t4=1
(t1,t2,t3,t4)∈T

E
[
zij(t1)z

∗
ij(t2)zkl(t3)z

∗
kl(t4)

]

− 1
n4

n∑

t1,t2,t3,t4=1
(t1,t2,t3,t4)∈T

E
[
zij(t1)z

∗
ij(t2)

]
E [zkl(t3)z

∗
kl(t4)] ,

(106)

where

T= {(a, b, c, d)|δab + δcd = 0, δac + δad + δbc + δbd ≥ 1}.
(107)

Taking into account (98), (99), and (100), it can be shown that

E
[
|r̂ij |2|r̂kl|2

]
= E

[
|r̂ij |2

]
E
[
|r̂kl|2

]
+ fijkl − gijkl, (108)

where

gijkl =
32(n− 1)(2n− 3)

n3
(h2

ij + h2
i′j)(h

2
kl + h2

k′l). (109)

and

fijkl =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ1(i, j), i= k, j = l,
τ2(i, j, l), i= k, j �= l,
τ2(i, j, k), i= l,
τ2(j, i, l), j = k,
τ2(j, i, k), j = l, i �= k,
τ3(j, i, k, l), i �= j �= k �= l,

(110)

with

τ1(i, j) =
16
n4

An,2
[
1 + h2

ii′jj′
]

+
32
n4

An,3
[
(h2

ij + h2
i′j) + hii′jj′(h

2
ij − h2

i′j)
]
,

(111)

τ2(i, j, k) =
4
n4

An,2[4(h
2
jk + h2

jk′) + (hii′jk′ + hii′j′k)
2

+ (hii′jk − hii′j′k′)2]

+
16
n4

An,3[(hii′jk − hii′j′k′)(hikhi′j + hijhi′k)

+ (hii′jk′ + hii′j′k)(hikhij − hi′jhi′k)

+ 2hjk(hikhij + hi′jhi′k)

+ 2hjk′(hikhi′j − hijhi′k)], (112)

and

τ3(i, j, k, l) =
2
n4

An,2

4∑

t=1

υ2
t (i, j, k, l) (113)

+
16
n4

An,3 [υ1(i, j, k, l)hijhkl

+ υ2(i, j, k, l)hi′jhk′l

+ υ3(i, j, k, l)hklhi′j

+ υ4(i, j, k, l)hijhk′l] . (114)

Hence, the variance of T ′
R under H1 is

σ2
1 =

1
4m2(m− 1)2

m∑

i,j,k,l=1
i<j,k<l

(fijkl − gijkl) , (115)

which completes the proof of Theorem 3.

APPENDIX D
MEAN AND COVARIANCE MATRIX OF r̃sc

We derive the mean and covariance matrix of r̃sc and post-
pone the proof of Gaussianity to Appendix E.

For convenience, we define a random vector r with the sub-
script sc to mean scaling as follows:

rsc =

√
n

2
r. (116)
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Then, r̃sc can be rewritten as r̃sc =
[
Re(r̂sc)

T , Im(r̂sc)
T
]T

,
where

r̂sc=[(r̂1,2)sc, (r̂1,3)sc, (r̂2,3)sc,· · ·, (r̂1,m)sc,· · ·, (r̂m−1,m)sc]
T
.

(117)

Since θ is assumed of order O(n− 1
2 ), we can apply a Taylor’s

approximation to p(ỹ(t);θ) around θ0 = 0, allowing us to write

p(ỹ(t);θ) = p(ỹ(t);θ0) + θT ∂p(ỹ(t))

∂θ

∣
∣
∣
∣
θ=θ0

+O(n−1)

=
1

22m
+

1
22m−1π

m∑

i,j=1
i<j

Re(zij(t))ρij

+
1

22m−1π

m∑

i,j=1
i<j

Im(zij(t))ρi′j +O(n−1),

(118)

where the elements of ∂p(ỹ(t))
∂θ

∣
∣
∣
θ=θ0

are obtained simi-

larly to (74) and (75). Since ρi′j′ = ρij , ρij′ =−ρi′j and
diag(Im(Px)) = 0, p(ỹ(t);θ) can be rewritten as

p(ỹ(t);θ) =
1

22m
+

1
22m−1π

2m∑

i,j=1
i<j

ỹi(t)ỹj(t)ρij +O(n−1).

(119)

From this PMF, it is easy to obtain

p(ỹa(t), ỹb(t);θ) =
1
4
+

1
2π

ỹa(t)ỹb(t)ρab +O(n−1), (120)

and

p(ỹa(t),ỹb(t), ỹc(t), ỹd(t);θ)

=
1
16

+
1

8π
ỹa(t)ỹb(t)ρab +

1
8π

ỹa(t)ỹc(t)ρac

+
1

8π
ỹa(t)ỹd(t)ρad +

1
8π

ỹb(t)ỹc(t)ρbc

+
1

8π
ỹb(t)ỹd(t)ρbd +

1
8π

ỹc(t)ỹd(t)ρcd

+O(n−1), (121)

where 1 ≤ a �= b �= c �= d≤ 2m. As a consequence, we have

E[ỹa(t)ỹb(t)] =
∑

ỹe(t)=±1
e=a,b

ỹa(t)ỹb(t)p(ỹa(t), ỹb(t);θ)

=
2
π
ρab +O(n−1), (122)

and

E[ỹa(t)ỹb(t)ỹc(t)ỹd(t)]

=
∑

ỹe(t)=±1
e=a,b,c,d

ỹa(t)ỹb(t)ỹc(t)ỹd(t)p(ỹa(t), ỹb(t), ỹc(t), ỹd(t);θ)

=O(n−1). (123)

When some or all of the indexes {a, b, c, d} are identi-
cal, E[ỹa(t)ỹb(t)ỹc(t)ỹd(t)] can be simplified by (85). Thus,
we can show

E[Re
(
(r̂ij)sc

)
] =

√
n

2
E[Re(r̂ij)]

=

√
n

2
E

[
1
n

n∑

t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

]

=

√
n

2

[
2
π
ρij +

2
π
ρi′j′ +O(n−1)

]

=
2
√

2n
π

ρij +O(n− 1
2 ), (124)

and

E[Im
(
(r̂ij)sc

)
] =

√
n

2
E[Im(r̂ij)]

=

√
n

2
E

[
1
n

n∑

t=1

(ỹi′(t)ỹj(t)− ỹi(t)ỹj′(t))

]

=

√
n

2

[
2
π
ρi′j −

2
π
ρij′ +O(n−1)

]

=
2
√

2n
π

ρi′j +O(n− 1
2 ), (125)

and the expected value of r̃ becomes

E[r̃sc] =
2
√

2n
π

θ +O(n− 1
2 ). (126)

Since the observations at different times are independent, for
t1 �= t2, we have

E[ỹa(t1)ỹb(t1)ỹc(t2)ỹd(t2)] = E[ỹa(t1)ỹb(t1)]E[ỹc(t2)ỹd(t2)].
(127)

To proceed, we need to compute

E[Re ((r̂ij)sc)Re ((r̂kl)sc)]− E[Re ((r̂ij)sc)]E[Re ((r̂kl)sc)]

=
n

2
E[Re(r̂ij)Re(r̂kl)]−

n

2
E[Re(r̂ij)]E[Re(r̂kl)]

=
1

2n
E

⎡

⎣
n∑

t1,t2=1

Re(zij(t1))Re(zkl(t2))

⎤

⎦

− 1
2n

E

[
n∑

t1=1

Re(zij(t1))

]

E

[
n∑

t2=1

Re(zkl(t2))

]

=
1

2n

n∑

t=1

E [Re(zij(t))Re(zkl(t))]

− 1
2n

n∑

t=1

E [Re(zij(t))]E [Re(zkl(t))]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 8
π2 ρ

2
ij +O(n−1), i= k, j = l,

2
πρjl −

8
π2 ρijρil +O(n−1), i= k, j �= l,

2
πρjk − 8

π2 ρijρki +O(n−1), i= l,
2
πρil −

8
π2 ρijρjl +O(n−1), j = k,

2
πρik − 8

π2 ρijρkj +O(n−1), j = l, i �= k,

− 8
π2 ρijρkl +O(n−1), i �= j �= k �= l.

(128)
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Since θ is of order O(n− 1
2 ), the result of (128) can be

rewritten as

E[Re ((r̂ij)sc)Re ((r̂kl)sc)]− E[Re ((r̂ij)sc)]E[Re ((r̂kl)sc)]

=

{
1 +O(n−1), i= k, j = l,

O(n− 1
2 ), otherwise,

(129)

where 1 ≤ i < j ≤m and 1 ≤ k < l ≤m. Similarly, we have

E[Re ((r̂ij)sc) Im ((r̂kl)sc)]− E[Re ((r̂ij)sc)]E[Im ((r̂kl)sc)]

=O(n− 1
2 ), (130)

and

E[Im ((r̂ij)sc) Im ((r̂kl)sc)]− E[Im ((r̂ij)sc)]E[Im ((r̂kl)sc)]

=

{
1 +O(n−1), i= k, j = l,

O(n− 1
2 ), otherwise,

(131)

Hence, the covariance matrix of r̃sc for low SNR is

Rr̃sc = Im2−m +O(n− 1
2 ). (132)

APPENDIX E
PROOF OF GAUSSIANITY OF r̃sc

We prove that r̃sc asymptotically follows a Gaussian distribu-
tion, which completes the proof of Theorem 4. For this proof,
we need the following lemma, which is a multivariate version
of the central limit theorem [63].

Lemma 1: Let s=
∑n

t=1 bt, where b1, . . . ,bn ∈ R
d×1 are

mutually independent random vectors with zero mean. Then,
as n→∞, s is asymptotically Gaussian distributed with zero
mean and covariance matrix C if

lim
n→∞

n∑

t=1

E

[∥
∥
∥C−1/2bt

∥
∥
∥

3
]
= 0. (133)

To use Lemma 1, we first define a new set of variables

z̃t =

√
1

2n
[Re(zt)

T , Im(zt)
T ]T , (134)

where 1 ≤ i≤ n, and

zt = [z1,2(t), z1,3(t), · · · , zm−1,m(t)]T . (135)

We also define

bt = z̃t − E[z̃t]. (136)

Using (98), we have

E[z̃t] =

(
8

nπ2

) 1
2

arcsinθ, (137)

where arcsin applying to its argument in an element-wise man-
ner. We also define

s=

n∑

t=1

bt, (138)

as in the previous lemma, which allows us to write r̃sc in
Theorem 4 as

r̃sc = s+ E[r̃sc], (139)

where the mean of r̃sc is given by

E[r̃sc] =

n∑

t=1

E[z̃t] =

(
8n
π2

) 1
2

arcsinθ. (140)

In addition, C is equal to Rr̃sc which is the covariance matrix
of r̃sc.

Since translation does not change the distribution type of
the variables, we only need to prove that s is asymptotically
Gaussian distributed to complete the proof of Theorem 4.

Defining ci as the ith row vector of C−1/2, we have

∥
∥
∥C−1/2bt

∥
∥
∥

3
=

(∥
∥
∥C−1/2bt

∥
∥
∥

2
) 3

2

=

⎛

⎝
m(m−1)∑

i=1

‖cibt‖2

⎞

⎠

3
2

.

(141)

The Cauchy-Schwarz inequality allows us to write

‖cibt‖2 ≤ ‖ci‖2 ‖bt‖2
, (142)

which yields

∥
∥
∥C−1/2bt

∥
∥
∥

3
≤

⎛

⎝
m(m−1)∑

i=1

‖ci‖2 ‖bt‖2

⎞

⎠

3
2

=

(∥
∥
∥C−1/2

∥
∥
∥

2
‖bt‖2

) 3
2

=
∥
∥
∥C−1/2

∥
∥
∥

3
‖bt‖3 (143)

Using the inequality E[f(x)]≥ E[g(x)], for f(x)≥ g(x)≥ 0,
we have

E

[∥
∥
∥C−1/2bt

∥
∥
∥

3
]
≤
∥
∥
∥C−1/2

∥
∥
∥

3
E

[
‖bt‖3

]
, (144)

Since
∥
∥C−1/2

∥
∥3

is bounded and using the previous inequality,
a sufficient condition for (133) is

lim
n→∞

n∑

t=1

E

[
‖bt‖3

]
= 0. (145)

Using (136) and the parallelogram law [64], we have

‖bt‖2
+ ‖z̃t + E[z̃t]‖2

= 2
(
‖z̃t‖2

+ ‖E[z̃t]‖2
)
. (146)

Since that ‖z̃t + E[z̃t]‖2 ≥ 0, we have

‖bt‖2 ≤ 2
(
‖z̃t‖2

+ ‖E[z̃t]‖2
)
. (147)

Therefore,

max ‖bt‖2 ≤max 2
(
‖z̃t‖2

+ ‖E[z̃t]‖2
)

=max 2

(
m(m− 1)

n
+

8
nπ2

‖arcsinθ‖2
)

=
2m(m− 1)

n
+

16
nπ2

max
θ

‖arcsinθ‖2

=
6m(m− 1)

n
. (148)
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Thus, it can be shown that

lim
n→∞

n∑

t=1

E

[
‖bt‖3

]
≤ lim

n→∞

n∑

t=1

max
[
‖bt‖3

]

= lim
n→∞

n∑

t=1

[(
max ‖bt‖2

) 3
2

]

≤ [6m(m− 1)]
3
2 lim
n→∞

n− 1
2

= 0. (149)

This completes the proof.
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