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Covariance Matrix Recovery From One-Bit Data
With Non-Zero Quantization Thresholds:
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Abstract—Covariance matrix recovery is a topic of great
significance in the field of one-bit signal processing and has
numerous practical applications. Despite its importance, the
conventional arcsine law with zero threshold is incapable of
recovering the diagonal elements of the covariance matrix. To
address this limitation, recent studies have proposed the use of
non-zero clipping thresholds. However, the relationship between
the estimation error and the sampling threshold is not yet known.
In this article, we undertake an analysis of the mean squared
error by computing the Fisher information matrix for a given
threshold. Our results reveal that the optimal threshold can
vary considerably, depending on the variances and correlation
coefficients. As a result, it is inappropriate to adopt a constant
threshold to encompass parameters that vary widely. To mitigate
this issue, we present a recovery scheme that incorporates time-
varying thresholds. Our approach differs from existing methods
in that it utilizes the exact values of the threshold, rather than
its statistical properties, to increase the estimation accuracy.
Simulation results, including those of the direction-of-arrival
estimation problem, demonstrate the efficacy of the developed
scheme, especially in complex scenarios where the covariance
elements are widely separated.

Index Terms—Covariance matrix estimation, mean squared
error analysis, non-zero threshold, one-bit sampling.
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I. INTRODUCTION

ONE-BIT analog-to-digital converters (ADCs) have gar-
nered significant attention in recent years due to their

unique merits over high-resolution ADCs. These advantages in-
clude cost-effectiveness, lower power consumption, and simpler
hardware design. In addition, the reduced data flow associated
with one-bit ADCs makes data storage and transmission more
manageable. This has led to the widespread application of one-
bit signal processing in various fields, such as multiple-input
multiple-output communications [1], [2], [3], [4], [5], [6], array
processing [7], [8], [9], [10], [11], [12], and radar [13], [14],
[15], [16], [17], [18], [19].

Despite its numerous advantages, one-bit analog-to-digital
conversion with zero sampling thresholds has created chal-
lenges in applications involving parameter estimation and de-
tection. The loss of amplitude information has limited its use
in areas that rely on second-order statistics, such as direction-
of-arrival (DOA) estimation [20], spectrum sensing [21], [22],
[23], and radar target detection [24], [25]. Therefore, the co-
variance matrix recovery has become a critical topic in one-bit
processing research.

Under the assumption of zero-mean Gaussian inputs, the
most frequently employed criterion for recovering one-bit co-
variance matrices is the arcsine law [26]. It can immediately
translate the one-bit covariance matrix into that of the un-
quantized data matrix. It does, however, provide a normal-
ized version of the covariance matrix, namely the correlation
matrix,1 rather than the original covariance matrix. That is,
unless the diagonal elements of the covariance matrix are equal,
the estimation is biased and inconsistent. It is because these
systems adopt zero as the sampling threshold, meaning that the
likelihood of the quantized signal has no bearing on the variance
of the random variables. As a result, these samples cannot
be used to estimate variances, i.e., the diagonal entries of the
covariance matrix.

To address this issue, Liu and Lin [27] have employed a
constant (non-zero) threshold to enable accurate and consistent
estimates of the covariance matrix, which may be easily ac-
complished by adding a DC level to the input signal. With the
addition of the non-zero threshold, the likelihood of the output

1This matrix contains all pairwise correlation coefficients.
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being +1 or−1 is no longer fixed at 1/2 but is instead a function
of the ratio between the threshold and the standard deviation of
the random variable. This allows the variance to be estimated.

In a parallel development, [28] and [29] use time-varying
thresholds to estimate parameters of sinusoidal signals, includ-
ing frequency, phase, and crucially, amplitude—a parameter not
recoverable with the zero-threshold approach. Moreover, it is
shown that employing time-varying thresholds can considerably
increase the recovery capability of one-bit processing method-
ologies. For instance, [30] presents an innovative iterative hard
thresholding algorithm devised for signal reconstruction from
one-bit measurements. Besides, [31], [32], [33], [34], [35]
proves that the use of adaptive or time-varying thresholds can
mitigate the reconstruction error in one-bit compressed sensing,
with [36] notably providing theoretical guarantees for these
schemes in cases of a large number of samples. It has also been
demonstrated that the use of time-varying sampling thresholds
can increase the signal recovery accuracy in numerous one-
bit signal recovery applications, including unlimited sampling
[37], [38], phase retrieval [39], [40], low-rank matrix sensing
[41], [42], among others. As illustrated in [41], a well-designed
threshold can effectively enhance signal recovery. Moreover,
the time-varying nature of the threshold allows it to be modified
adaptively to align better with the recovery algorithm [43]. For
instance, the work in [37] utilizes the concept of unlimited
sampling to design an effective dithering scheme by minimizing
the difference between the dynamic ranges of input signals
and thresholds, thereby achieving better recovery performance
compared to one-bit ΣΔ sampling. In recent works, [44], [45],
[46], [47] suggest the use of a time-varying threshold for covari-
ance matrix recovery. This approach, involving the addition of
a Gaussian dithering signal to the original constant threshold,
promises to deliver superior performance. Additionally, [33],
[34] demonstrate that dithering enables the reconstruction of
signals from non-Gaussian measurements and enhances robust-
ness against noise. Finally, employing multiple sequences of
dithering signals has been shown to further enhance perfor-
mance, as evidenced in [30], [35], [37], [41], [44].

However, there is still no performance analysis conducted to
derive the estimation error associated with the threshold and
the population covariance matrix, making it impossible to opti-
mize the threshold value to improve estimation performance.
In addition, from a statistical sense, the approach in [45] is
equivalent to modifying the population covariance matrix of the
signal prior to quantizing with a constant threshold. Without
such analysis, we cannot set the dithering signal properly to
relocate the covariance matrix to an appropriate region.

In this article, we analyze the performance of the constant
threshold estimator in [27], which is also compatible with the
random threshold method in [45]. Due to the absence of closed-
form estimators, it is prohibitive to define their statistical behav-
ior using conventional methodologies. Our idea is to perform
a Taylor’s expansion and then apply the result to compute the
mean squared error (MSE) of the estimators. It is found that
a low threshold facilitates the estimation of the non-diagonal
elements while diagonal ones favour thresholds comparable
to their square roots. Therefore, it is inappropriate to adopt a

constant threshold to deal with all elements in the covariance
matrix, especially when the parameters are distinct from each
other, as is typical when the dimension increases.

To address this issue, we present a novel approach based on
a time-varying threshold, which differs from [44], [45], [46]
since it uses the exact values of the threshold and not only
its statistical properties. Exploiting Price’s theorem [48], we
calculate the gradient of the orthant probability with regard
to the covariance matrix parameters and seek the maximum
likelihood estimators (MLEs) of the parameters. The algorithm
is also extended to complex-valued scenarios to accommo-
date array processing applications. Furthermore, we carry out
performance analysis of the new method by computing the
inverse of the Fisher information matrix, which allows us to
predict the performance more efficiently than through Monte
Carlo simulations.

Finally, simulation results are presented to demonstrate the
effectiveness of our proposed approach. We consider the DOA
estimation of coherent sources, which requires the reconstruc-
tion of the received signals covariance matrix, as an example.
We first estimate the covariance matrix through different meth-
ods and then process the results with the Enhanced Principal-
singular-vector Utilization for Modal Analysis (EPUMA) [20]
algorithm to produce DOA estimates. It is shown that compared
to constant and random threshold-based methods, our algorithm
achieves significantly improved accuracy and stability.

The key contributions of this article are as follows:
1) We conduct a thorough performance analysis of the

constant threshold approach by leveraging a Taylor’s ex-
pansion to analyze the estimator, proving that it is chal-
lenging to use a constant threshold to effectively estimate
parameters distributed over a wide range. This finding
opens up the opportunity for optimization of the sam-
pling threshold.

2) We introduce a new sampling strategy that utilizes
time-varying thresholds and the corresponding recov-
ery algorithm. In comparison to the existing constant
and random threshold approaches, our solution of-
fers higher estimation accuracy and demonstrates im-
proved robustness against parameter unevenness and high
correlation coefficients.

3) To further analyze the algorithm performance, we
compute the Fisher information corresponding to each
threshold value. Our results demonstrate that the Fisher
information provides a precise performance indicator
even when the likelihood function is inconsistent across
different samples.

4) Finally, we extend the covariance matrix estimator to
the complex-valued scenario and integrate it with the
EPUMA for DOA estimation, highlighting the broad
range of potential applications.

We proceed under the assumption of zero-mean Gaussian in-
puts, a practice that aligns with most of the research in this field.
It is noteworthy that some studies do explore non-Gaussian
settings. For instance, in the field of one-bit compressed sens-
ing, [50], [51], [52], [53] focus on the recovery of sub-
Gaussian signals by exploiting sparsity rather than statistical
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distributions. On the other hand, in the field of covariance
matrix recovery, [49] extends the arcsine law to all complex
elliptically symmetric distributions. More recently, [47] has
derived a sharp non-asymptotic error bound for the arcsine
law estimator, and proposed a simplified reconstruction method
for sub-Gaussian signals with theoretical guarantees, demon-
strating that the probability of the estimation error exceeding
a certain level decays exponentially. The effectiveness of this
approach has further been validated in a channel estimation
application [54].

Nonetheless, in our study, the spotlight remains on the Gaus-
sian signal case, since the proposed method and analysis are
based on the likelihood function. We also operate under the
assumption of a large number of available samples—a com-
mon scenario in one-bit sampling [40], [41], facilitated by its
simplicity that enables a high sampling rate. Moreover, our
analysis diverges subtly from [47], [54] in that we scrutinize the
individual MSE of the elements to be estimated, rather than the
matrix norms. This focus is driven by our intent to understand
how threshold settings individually influence the estimation
accuracy of variance and covariance. The overall estimation
error can then be evaluated by aggregating the individual MSEs.

Finally, we assume that the dimension of the covariance
matrix to be recovered is significantly smaller than the number
of samples. Namely, our analysis considers the case of N →∞
and M/N → 0, where M and N represent the dimension of
the covariance matrix and the number of samples, respectively.
Worth mentioning, however, is [47] and a recent study [55] that
show that the recovery of high-dimensional sparse covariance
matrices under sub-Gaussian and heavy-tailed distributions is
feasible. Yet, the task of a general high-dimensional one-bit co-
variance matrix recovery method remains an arduous challenge
and is beyond the scope of this article.

Notation: Throughout this article, we use boldface upper-
case letters for matrices, boldface lowercase letters for column
vectors, and lightface lowercase letters for scalar quantities.
The notation A ∈ R

p×q (Cp×q) indicates that A is a p× q
real (complex) matrix. The operators E[a] and V[a] denote,
respectively, the expectation and variance of random variable
a, C[a, b] is the covariance between a and b, and ∼ means “dis-
tributed as”. The superscript â denotes the estimate of a. Finally,
the operators Re(·) and Im(·) extract the real and imaginary
parts of their argument and ı=

√
−1 is the imaginary unit.

II. PRELIMINARIES

In this section, we present the problem of one-bit covariance
estimation and review existing methods based on various sam-
pling schemes, including the zero threshold, constant threshold,
and random threshold approaches.

A. Problem Formulation

Suppose y ∈ R
M×1 follows a zero-mean multivariate

Gaussian distribution N (0,Σy). Assume we have N i.i.d.
one-bit quantized observations of y, x(t) = sign(y(t)
− v(t)), t= 1, · · · , N , where x(t) = [x1(t), · · · , xM (t)]T ,
y(t) = [y1(t), · · · , yM (t)]T , and v(t) = [v1(t), · · · , vM (t)]T ,

is the quantization threshold vector. The function sign(·) is the
quantization operator

sign(x) =

{
+1, x≥ 0,

−1, x < 0.
(1)

Our aim is to recover the covariance matrix of the unquantized
signal y, Σy = E[yyT ], given its one-bit quantized samples,
i.e., X= [x(1), · · · ,x(N)]. To simplify our discussion, we fo-
cus on the 2× 2 case:

Σy =

[
σ2
1 σ12

σ12 σ2
2

]
, (2)

which can be easily extended to the general case in a pair-
wise manner.

There are various methods of setting the threshold v(t).
Traditionally, it is fixed at v(t) = 02, resulting in the complete
loss of amplitude information and only the correlation coef-
ficients can be obtained. In order to estimate the variance of
the random variables, it is necessary to set v(t) to be non-
zero by incorporating a control sequence at the input of the
ADC. This control sequence can be a DC level [27], or taking
a time-varying form, such as a sine wave [56], or a random
sequence, which can be generated with thermal noise diodes
[32], [36], [45].

B. Zero Threshold

When the sampling threshold is 0, the relationship be-
tween Σx and Σy can be described using the well-known
arcsine law [26]:

Σx =
2

π
sin−1

(
D

− 1
2

y ΣyD
− 1

2
y

)
, (3)

where Dy = diag(Σy). Assuming that Dy is the identity ma-

trix, a natural estimator of Σy is Σ̂y = sin
(
Σ̂xπ/2

)
, where

Σ̂x is the sample covariance matrix of x, Σ̂x =XXT /N . In
the complex-valued case, where the sampling process is modi-
fied as x=Q(y) = sign(Re(y)− v) + ısign(Im(y)− v), the
estimator is modified accordingly as

Σ̂y = sin
(π
4
Re(Σ̂x)

)
+ ı sin

(π
4
Im(Σ̂x)

)
. (4)

Interestingly, the work [49] demonstrated that (4) holds not
only for complex circular Gaussian distributions, but all com-
plex elliptically symmetric distributions. However, a significant
drawback of the arcsine law is that it is incapable of estimating
the diagonal entries of Σy, as the likelihood function does
not include these entries. That said, if the assumption of unit
diagonal entries is violated, the arcsine law becomes biased
and inconsistent.

C. Constant Threshold Approach

The use of a constant threshold has been introduced in [27]
for covariance matrix recovery. The reconstruction can be ac-
complished based on the following probabilities:

pi = Pr{xi =+1}=Q

(
v

σi

)
, i= 1, 2, (5)
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p12 = Pr{x1 =+1, x2 =+1}

=

∫ ∞

v
σ1

∫ ∞

v
σ2

f

(
y1, y2

∣∣∣ σ12

σ1σ2

)
dy1dy2, (6)

where v is the threshold, f(y1, y2|ρ) is the probability density
function of bivariate Gaussian distribution with unit variances
and correlation coefficient ρ, given by

f(y1, y2|ρ) =
1

2π
√
1− ρ2

exp

(
−y21 − 2ρy1y2 + y22

2(1− ρ2)

)
, (7)

and

Q(a) =

∫ ∞

a

1√
2π

exp

(
−t2

2

)
dt. (8)

The MLEs of the probabilities are:

p̂i =

∑N
t=1[xi(t) + 1]

2N
, i= 1, 2, (9)

p̂12 =

∑N
t=1[x1(t) + 1][x2(t) + 1]

4N
. (10)

As a consequence, and using the invariance property of the
MLE, the MLEs of the variances are σ̂i = v/Q−1(p̂i). On
the other hand, the right hand side of (6) can be rewritten as
the following infinite polynomial form:2

p̂12 =
e−

v2

σ̂1σ̂2

π

∞∑
k=0

Hk

(
v√
2σ̂1

)
Hk

(
v√
2σ̂2

)
2k+1(k + 1)!

ρk+1 +
μ1μ2

4
,

(11)

where

μi = 2Q

(
v

σ̂i

)
− 1, i= 1, 2, (12)

and

Hk(a) = (−1)kea
2 dk

dak
e−a2

, (13)

is the Hermite polynomial of order k. The correlation coefficient
ρ can then be estimated numerically by solving the equation
omitting higher-order terms of the polynomial. It is worth men-
tioning that, although no theoretical guarantee was reported in
[27], simulations show that the approximation is reasonably
accurate for |ρ|< 0.6. This will be evidenced by our numerical
results in Section IV-F.

D. Random Threshold

In [44] and [45], the use of a random threshold with a Gaus-
sian distribution N (d1M ,Σt) is suggested. This is equivalent
to adding a zero-mean dithering signal to the constant sampling
threshold d1M , resembling the “dithered quantization” in the
traditional multi-bit scenarios [57]. Consequently, the covari-
ance matrix is adjusted to Σ′

y =Σy +Σt. When designed
appropriately, this dithering signal has the potential to reduce
estimation errors.

2Note that the result here is slightly modified, as opposed to the original
version in [27], to cope with the non-uniform variances.

Interestingly, [44] and [45] presented a modified arcsine law:

Σx(i, j) =
e

−d2(σi+σj−2σij)

2(σiσj−σ2
ij)

π
√(

σiσj − σ2
ij

)
{∫ π

2

0

1

βn
+

√
π

βn

αn

2βn
e

α2
n

4βn

−
√

π

βn

αn

βn
Q

(
αn√
2βn

)
e

α2
n

4βn dθ

}
− 1, (14)

with

αn =
d (σi sin θ + σj cos θ − σij(cos θ + sin θ))(

σiσj − σ2
ij

) , (15a)

βn =
σj cos

2 θ + σi sin
2 θ − σij sin 2θ

2
(
σiσj − σ2

ij

) , (15b)

and the population parameters σi and σij are drawn from Σ′
y.

Furthermore, it was shown in [45] that σij could be determined
through minimization of the cost function:

G (σij)� log

(∣∣∣Σ̂x(i, j)−Hn

(
σ�
i , σ

�
j , σij

)∣∣∣2) . (16)

In this case, Hn

(
σ�
i , σ

�
j , σij

)
serves as an approximation to

the aforementioned modified arcsine law. Importantly, [45]
proposed three distinct approximations. The first is based
on the Padé approximation and results in a non-convex
optimization problem. The remaining two methods rely on the
Gauss-Legendre quadrature approximation and Monte-Carlo
integration, which respectively generate a convex optimization
problem ensuring a global optimum.

Notably, [45] presented a modified version of the Bussgang
law [58], [59], which is useful for analyzing the correlation be-
tween the quantized signal x and unquantized signal y. Specif-
ically, the cross-covariance matrix between x and y is:

Σxy(i, j) =Σxv(i, j) + [ε1σij − ε2d (σj − σij)] . (17)

Here, Σxv, representing the cross-covariance matrix between
x and the random threshold v, can be estimated from samples.
The parameters ε1 and ε2 are given by

ε1 =

√
2

πσj
Γ

(
1,

d2

2σj

)
− d√

πσ2
j

(
Γ

(
1

2
,
d2

2σj

)
−
√
π

)
,

(18)

ε2 =− 1

σj
erf

(
d√
2σj

)
, (19)

where Γ(·) denotes the Gamma function. It is also worth men-
tioning that the above results have been extended to station-
ary Gaussian inputs where the covariance matrix is Toeplitz,
also with convex programs containing a global solution, as
detailed in [46].

In general, non-zero threshold approaches surpass the arcsine
law as they allow for the full recovery of the covariance matrix.
However, it remains unclear whether a constant threshold is
optimal. Particularly, no performance analysis has been con-
ducted to determine whether estimating Σy or Σ′

y provides
smaller MSE, which makes it impossible to determine the
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shifting matrix Σt. In addition, it is unknown which thresh-
old provides optimum estimation for different diagonal and
non-diagonal elements.

In this article, we first analyze the MSE of the constant
threshold estimator, revealing that the optimal threshold for esti-
mating different variances and covariances are distinct. We then
present a recovery algorithm based on time-varying thresholds,
where the thresholds are known deterministic values instead of
random variables, as opposed to [45].

III. PERFORMANCE ANALYSIS OF CONSTANT

THRESHOLD APPROACH

In this section, we analyze the MSE of the constant-
threshold-based approach with regard to both variance and co-
variance estimation. The analysis is conducted by applying a
Taylor’s expansion to the expressions of the estimators. For
variance estimation, a Taylor’s expansion up to the second order
is applied, while for the estimation of covariances, a first-order
expansion is employed due to the complexity of the estimator.

A. MSE of Diagonal Elements

The approximation is made under the assumption that N is
large, which is a common scenario in one-bit systems as the
sampling rate is typically very high. Furthermore, as it has been
proved that the bias of MLE approaches 0 as N →∞ [60],
the MSE of the detector becomes equivalent to the variance of
the estimators.

Recall that the estimator for σi(i= 1, 2) is

σ̂i =
v

Q−1(p̂i)
. (20)

We first compute the second-order Taylor’s expansion of the
estimator. For simplicity, we define

h(a) =
v

Q−1(a)
, (21)

and the second-order Taylor’s expansion of h(a) at a= pi is:

h(a) =h(pi) + h′(pi)(a− pi)

+
1

2
h′′(pi)(a− pi)

2 +O((a− pi)
3), (22)

where

h′(pi) =

√
2πσ2

i

v
exp

(
v2

2σ2
i

)
, (23)

h′′(pi) = exp

(
v2

σ2
i

)(
4πσ3

i

v2
− 2πσi

)
. (24)

Proof: See Appendix A.
According to (22), the variance of σ̂i can be approximated as:

V(σ̂i)≈ (h′(pi)− h′′(pi)pi)
2
V(p̂i) +

1

4
[h′′(pi)]

2
V(p̂2i )

+ (h′(pi)− h′′(pi)pi)h
′′(pi)C(p̂i, p̂

2
i ). (25)

Next, we calculate the terms V(p̂i), V(p̂2i ) and C(p̂i, p̂
2
i ), which

requires us to first compute the second- to fourth-order moments
of p̂i. Since Ni =Np̂i follows a binomial distribution, its mo-
ments can be evaluated by the following lemma [61].

Lemma 1: The cth order moment of a binomial distributed
random variable ϑ with success probability pi and number of
trials N is:

E[ϑc] =

c∑
k=0

Sc
kN

kpki , (26)

where Sc
k is the Stirling number of the second kind:

Sc
k =

k∑
j=1

(−1)k−j jc−1

(j − 1)!(k − j)!
, (27)

and Nk is the k−th falling power of N :

Nk =N(N − 1) · · · (N − k + 1). (28)

Using Lemma 1 with ϑ=Np̂i, the required moments of p̂i are:

m2=E[p̂2i ] =
pi + p2i (N − 1)

N
, (29)

m3=E[p̂3i ] =
pi + 3p2i (N − 1) + p3i (N − 1)(N − 2)

N2
, (30)

m4=E[p̂4i ] =
pi + 7p2i (N − 1) + 6p3i (N − 1)(N − 2)

N3

+
p4i (N − 1)(N − 2)(N − 3)

N3
, (31)

where mk denotes the k−th order moment of p̂i. Therefore,
we have

V(p̂i) =m2 − p2i , (32)

V(p̂2i ) =m4 −m2
2, (33)

C(p̂i, p̂
2
i ) =m3 − pim2. (34)

Substituting (32)–(34) into (25) results in the variance of σ̂i.

B. MSE of Non-Diagonal Elements

The analysis of the covariance estimator is more complex
compared to the variance estimator as it depends not only on
p̂ij , but also on the estimated variances σ̂i and σ̂j . Therefore,
a second-order analysis is not feasible and a first-order anal-
ysis is conducted instead. This involves constructing a linear
approximation of σ̂ij , resulting in a simplified representation of
its behavior. The result is summarized in the following lemma.

Lemma 2: The first-order Taylor’s expansion of σ12 as a
function of p̂1, p̂2 and p̂12 is

σ12 − σ̂12 ≈ b [p1 − p̂1, p2 − p̂2, p12 − p̂12]
T
, (35)

where

b=

[
−∂σ12

∂p12

∂p12
∂σ1

h′(p1),−
∂σ12

∂p12

∂p12
∂σ2

h′(p2),
∂σ12

∂p12

]
, (36)

with

∂p12
∂σ12

=

[
∂σ12

∂p12

]−1

=
1

σ1σ2
f

(
v

σ1
,
v

σ2

∣∣∣ρ) , (37)

∂p12
∂σ1

=
1

σ1
g

(
v

σ1
,
v

σ2
, ρ

)
, (38)

∂p12
∂σ2

=
1

σ2
g

(
v

σ2
,
v

σ1
, ρ

)
, (39)
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Fig. 1. Mean squared error versus threshold.

and

g(κ1, κ2, �)

=
κ1√
2π

exp

(
−κ2

1

2

)
Q

(
κ2 − �κ1√

1− �2

)
− �f (κ1, κ2|�) . (40)

Proof: See Appendix B.
Using the previous lemma, the variance of σ̂12 can be com-

puted as

V[σ̂12] ≈ bRbT , (41)

where R is the covariance matrix of the random vector
[p̂1, p̂2, p̂12]

T :

R=
1

N

⎡
⎣ p1p̄1 p12 − p1p2 p12p̄1
p12 − p1p2 p2p̄2 p12p̄2

p12p̄1 p12p̄2 p12p̄12

⎤
⎦ , (42)

with p̄1 = 1− p1, p̄2 = 1− p2, and p̄12 = 1− p12.
Proof: See Appendix C.
Having obtained the theoretical performance of the constant-

threshold estimator, we now conduct a simulation to study
how the estimation errors of the standard deviation and co-
variance fluctuate with regard to the threshold value. As il-
lustrated in Fig. 1, three different groups of σ1, σ2, σ12 are
selected: [0.25, 0.6,−0.08], [0.9, 1.2, 0.2], and [1.5, 2,−0.3].
Correspondingly, the threshold ranges from 0.1 to 1.6, 4, and
6. It is clearly demonstrated that the optimal threshold for the
three parameters can vary significantly. In this simulation, the
optimal threshold value for the standard deviation estimation
is approximately 1.6 times the population standard deviation,
whereas the estimation of covariance prefers a low threshold.
As a result, it is difficult to use a single threshold to deal with all
the parameters. This issue is further compounded in real-world
applications, where the parameters may be distributed over a
broad range as the dimension increases. Consequently, recovery
schemes incorporating time-varying thresholds are needed.

IV. PROPOSED COVARIANCE RECOVERY SCHEME

In this section, we propose the implementation of a time-
varying, known sampling threshold in lieu of constant or ran-
dom sampling thresholds. Specifically, the sampling period is
divided into l sub-intervals of length n, with each sub-interval
employing a distinct constant threshold. Compared to [27], [45],

our approach has the potential to increase robustness, particu-
larly in situations where the diagonal entries differ significantly
or the correlation coefficients are high. To achieve this, we first
establish the MLEs of σ1 and σ2 using the data from their
respective channels, and then search for the MLE of σ12 with
the previously estimated σ1 and σ2 fixed. Then, the obtained
values are used as the starting point for an iterative process that
ultimately yields the joint MLE of θ = [σ1, σ2, σ12]

T . Finally,
we prove that the joint MLE is numerically close to the initial
estimates when the number of sub-intervals is small. In such
cases, we can omit using the joint MLE with negligible perfor-
mance loss and significant computational savings.

A. Diagonal Entries

Without loss of generality, we study the MLE of σi based
on xi = [xi(1), · · · , xi(N)]. The log-likelihood of σi can be
written as:

L(xi;σi) =
N∑
t=1

log

(
Q

[
xi(t)vi(t)

σi

])
. (43)

Consequently, the MLE of σi is the solution of the follow-
ing equation:

∂L(xi;σ1)

∂σi
=

N∑
t=1

Δ1,t(σi)

qi,t(σi)
= 0, (44)

where

Δ1,t(σi) =
vi(t)√
2πσ2

i

exp

(
−v2i (t)

2σ2
i

)
, (45)

qi,t(σi) =
xi(t)− 1

2
+ pi,t(σi), (46)

with

pi,t(σi) =Q

(
vi(t)

σi

)
. (47)

We then obtain the ML estimate of σi by the following Newton’s
iteration:

σ̂
(u+1)
i = σ̂

(u)
i − ∂L(xi;σi)

∂σi

/ ∂2L(xi;σi)

∂σ2
i

∣∣∣∣
σi=σ̂

(u)
i

, (48)

where the second-order derivative is calculated as:

∂2L(xi;σi)

∂σ2
i

=
N∑
t=1

qt(σi)Δ2,t(σi)−Δ2
1,t(σi)

q2t (σi)
, (49)
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with

Δ2,t(σi) =
v3i (t)− 2vi(t)σ

2
i√

2πσ5
i

exp

(
−v2i (t)

2σ2
i

)
. (50)

B. Non-Diagonal Entries

After obtaining the MLEs of σ1 and σ2, the covariance σ12

can be estimated by assuming σ1 = σ̂1 and σ2 = σ̂2. Therefore,
we have

p12,t(ρ̃) =

∫ ∞

v1(t)
σ̂1

∫ ∞

v2(t)
σ̂2

f
(
y1, y2

∣∣∣ρ̃) dy1dy2. (51)

where ρ̃= σ12/(σ̂1σ̂2). According to the Price theorem [27],
[48], the derivative of p12 with respect to ρ̃ is calculated as:

∂p12,t(ρ̃)

∂ρ̃
= f

(
v1(t)

σ̂1
,
v2(t)

σ̂2

∣∣∣ρ̃) . (52)

Then, the log-likelihood function is

L(X; θ̃) =
N∑
t=1

log
(
ot(θ̃)

)
, (53)

where θ̃ = [σ̂1, σ̂2, σ12]
T and

ot(θ̃)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p12,t(ρ̃), x(t) = [+1,+1]T ,

p1,t(σ̂1)− p12,t(ρ̃), x(t) = [+1,−1]T ,

p2,t(σ̂2)− p12,t(ρ̃), x(t) = [−1,+1]T ,

1−p1,t(σ̂1)−p2,t(σ̂2)+p12,t(ρ̃), x(t) = [−1,−1]T .

(54)

The first-order derivative of the log-likelihood is

∂L(X; θ̃)

∂σ12
=

N∑
t=1

Δ′
1,t(ρ)

ot(θ̃)
, (55)

where

Δ′
1,t(ρ̃) =

x1(t)x2(t)f
(
w1(t), w2(t)

∣∣∣ρ̃)
σ̂1σ̂2

, (56)

with

w1(t) =
v1(t)

σ̂1
, w2(t) =

v2(t)

σ̂2
. (57)

In addition, the second-order derivative can be computed as

∂2L(X; θ̃)

∂σ2
12

=
N∑
t=1

ot(θ̃)Δ
′
2,t(ρ̃)− [Δ′

1,t(ρ̃)]
2

o2t (θ̃)
, (58)

where

Δ′
2,t(ρ̃) =

1

2πσ̂1σ̂2

√
1− ρ̃2

[
ρ̃+ w1(t)w2(t)

1− ρ̃2
− ρ̃ut(ρ̃)

(1− ρ̃2)2

]

× exp

[
− ut(ρ̃)

2(1− ρ̃2)

]
, (59)

with

ut(ρ̃) = w2
1(t) + w2

2(t)− 2ρ̃w1(t)w2(t). (60)

Similarly, we construct the Newton’s iteration algorithm to
solve this problem, which is:

σ̂
(u+1)
12 = σ̂

(u)
12 − ∂2L(X; θ̃)

∂σ12

/ ∂2L(X; θ̃)

∂σ2
12

∣∣∣∣∣
σ12=σ̂

(u)
12

. (61)

C. Joint MLE

Having obtained the initial estimates, we now seek the joint
MLE of σ1, σ2, and σ12, which can be achieved using a gradient
descent approach. Following the argument in (38) and (39), it
is easy to obtain the gradients of the log-likelihood with respect
to σ1 and σ2 as

∂L(X;θ)

∂σ1
=

N∑
t=1

1

σ1ot(θ)
g
(
z1(t), z2(t), x1(t)x2(t)ρ

)
, (62)

∂L(X;θ)

∂σ2
=

N∑
t=1

1

σ2ot(θ)
g
(
z2(t), z1(t), x1(t)x2(t)ρ

)
, (63)

where zi(t) = v(t)xi(t)/σi. Furthermore, since

∂L(X;θ)

∂σ12
=

N∑
t=1

x1(t)x2(t)

σ1σ2ot(θ)
f (z1(t), z2(t)|ρ) , (64)

the iterative procedure is

θ̂
(u+1)

= θ̂
(u)

+ γ(u) ∂L(X;θ)

∂θ

∣∣∣∣
θ=θ̂

(u)
, (65)

where γ(u) is the learning rate at the uth iteration.
However, when the number of sub-intervals l is small, i.e.,

the number of different thresholds is small, the above iterative
process can be omitted with minimal performance loss and the
estimates are given by those in previous sections. This assertion
is proved in Appendix D and, in the next section, it is also
verified by numerical simulations.

Remark 1: When considering dimension greater than 2, our
approach involves recursively employing the 2× 2 algorithm
to reconstruct the covariance matrix. Theoretically, as the di-
mensions increase, there is a potential risk for the resulting
matrix to be not positive-semidefinite. However, it is worth
noting that throughout our extensive simulations, we have yet to
encounter this particular issue. Special attention should be given
to this potential limitation, especially in applications involving
extremely high-dimensional settings.

D. Complex-Valued Case

We now assume x follows a multivariate complex Gaus-
sian distribution with covariance matrix Σx. We perform the
widely linear transformation [62], namely, stacking the real and
imaginary parts of x as x= [wT , zT ]T , where w =Re(x) and
z= Im(x). Then, the covariance matrix of x is

Σx =

[
Σww Σwz

Σzw Σzz

]
. (66)

Accordingly, we perform the same procedure to transform the
one-bit samples y into y. Then, Σx is estimated from y via the
algorithm in the previous subsection. Finally, we reconstruct the
covariance matrix of x from Σ̂x as

Σ̂x = Σ̂ww + Σ̂zz + ı(Σ̂zw − Σ̂wz). (67)
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E. Performance Analysis of the Estimator

This section delves into the analysis of the MSE for the pro-
posed time-varying threshold-based approach. To summarize
our findings, we present the following theorem.

Theorem 1: The MSE matrix of the MLE can be approxi-
mated asymptotically (N →∞) by

Q= F−1(θ0). (68)

Here, F(θ) denotes the Fisher information matrix (FIM) de-
fined as:

F(θ) = E

[
∂L(X;θ)

∂θ

∂L(X;θ)

∂θT

]
. (69)

Furthermore, θ0 = [σ1, σ2, σ12]
T represents the genuine pa-

rameter vector.
Proof: See Appendix E.
Since the samples are mutually independent, we can compute

the Fisher information contributed by each sample separately.
Using the first-order derivatives in (62)–(64) and the fact that
x(t) ∈ {±1,±1}, for t= 1, · · · , N , the FIM is computed as

F(θ) =

N∑
t=1

∑
x(t)∈{±1,±1}

ot(θ)

[
∂L(x(t))

∂θ

∂L(x(t))
∂θT

]
. (70)

Building upon Theorem 1, the asymptotic MSE for the indi-
vidual components can be gleaned from the diagonal entries
of F−1(θ0).

Remark 2: A crucial application of the above result is the
optimization of the sampling threshold. This threshold can be
dynamically adjusted in practice. More specifically, we can
assess the MSE by utilizing the current covariance matrix esti-
mate, and then adopt the threshold value to minimize the MSE
in the subsequent stages of the observation process. Though
optimizing the overall MSE can be a challenging task due to the
presence of the matrix inverse operator, a more straightforward
but approximate strategy could be minimizing the most signif-
icant MSE among all elements. As observed in Fig. 1, the op-
timal threshold value for variance estimation is approximately
1.6 times the standard deviation. In contrast, determining the
optimal threshold for covariance estimation is more compli-
cated. While it can be approximated numerically by creating
a plot akin to Fig. 1, the exploration of potential numerical
optimization techniques could prove beneficial for future work.

F. Complexity Analysis

During the iterative process, the primary computational load
originates from two sources: 1) computation of the Q function,
denoted as C1, and 2) computation of the 2-dimensional orthant
probability (2-D OP), denoted as C2. We segment the entire
sampling process into distinct sub-intervals, and within each,
a separate Q function is computed for the evaluation of p1
and p2. Furthermore, we calculate an additional Q function
alongside a 2-D OP for p12. The total number of iterations for
the ith variance estimation is designated as ti, while that for
the covariance is denoted as t12. The total computational load
for variance estimation is thus l(t1 + t2)× C1, while that for

Fig. 2. Maximum relative error versus correlation coefficient.

covariance estimation equates to lt12 × C2. In the joint MLE
process, a total computation of lr × (C1 + C2) is required,
where r is the number of iterations in this step. Consequently,
the total computational load primarily comprises:

C = l(t1 + t2 + r)C1 + l(t12 + r)C2. (71)

Evidently, C is influenced by two factors: the number of itera-
tions and the computation of the Q function and the 2-D OP.

We begin our study with the number of iterations using
simulations. We establish a threshold that ranges from 0.1 to
1, increasing in increments of 0.1, with each value maintained
for 1/10 of the sampling period. The standard deviations σ1

and σ2 are independently generated within [0.5, 1.5], while ρ
falls within [−0.95, 0.95], all according to a uniform distribu-
tion. After conducting 10, 000 simulations, we find the average
number of iterations for variance estimation to be 4.3 and 4.7 for
covariance estimation. We then explore the number of iterations
necessary for joint MLE. To showcase the efficacy of employ-
ing separate MLEs as initial values in reducing the iteration
numbers, we also explore the scenario where separate MLEs
are not adopted as the initial value, opting for I2 instead. Our
findings show that an average of 5.2 iterations are needed with
initial estimates, while 270.2 iterations are required without
them. Thus, utilizing separate MLEs limits the total number of
iterations effectively.

Next, we delve into the computational loads C1 and C2.
Given the Q function’s computational maturity and the avail-
ability of numerous efficient algorithms, its computational load
is relatively low. In contrast, the 2-D OP requires numerical
evaluation or the application of the Hermite polynomial method
as detailed in [27]. To compare the accuracy and evaluation
times between these two methods, we first plot the relative error
of the Hermite polynomial method. From (11), it is clear that
accuracy is primarily influenced by the parameter ρ. Hence, ρ
is varied from −0.95 to 0.95, and the two variances are inde-
pendently generated uniformly within [0.5, 1.5] with a threshold
of 1. We carry out 1000 trials at each point, documenting the
maximum relative error. The results, depicted in Fig. 2, affirm
the polynomial method’s reasonable accuracy for |ρ|< 0.6. As
a result, in each iteration step, based on the current value of ρ,
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we opt for numerical integration if |ρ| ≥ 0.6 and use the Hermit
polynomial method when |ρ|< 0.6.

Secondly, we study the average elapsed time, utilizing a
computer equipped with a 3.8 GHz Intel i9 processor and
32 GB RAM for the simulation. The average elapsed time is
4.86 ms for numerical integration and a significantly lower
0.014 ms for the Hermite polynomial method. We can thus
express the total computational cost as:

C = l(t1 + t2 + r)C1 + l(t′12 + r′)C ′
2 + l(t′′12 + r′′)C ′′

2 .
(72)

Here, C ′
2 denotes the cost of numerical integration and C ′′

2 sig-
nifies the cost of the Hermite polynomial method. The variables
t′12 and r′ encapsulate the numbers of instances when |ρ| ≥
0.6 for the estimation of σ12 and the joint MLE, respectively.
Meanwhile, t′′12 and r′′ represent the number of occurrences
when |ρ|< 0.6.

Lastly, performing the joint MLE for dimensions higher than
2 can prove quite expensive due to the rapidly increasing com-
plexity of higher-order orthant probabilities with the dimension
[63]. Hence, in practical scenarios, it is often sufficient to re-
cover the covariance matrix by first estimating the variances,
followed by pairwise covariance estimation. Under such cir-
cumstances, the total computational cost can be represented as:

C =

m∑
i=1

ltiC1 +

m∑
i=1

i−1∑
j=1

l(t′ijC
′
2 + t′′ijC

′′
2 ). (73)

In this formulation, ti represents the number of iterations in
the estimation of the ith variance, t′ij represents the number
of iterations in the estimation of the (i, j)th covariance where
numerical integration is employed, and t′′ij signifies the instance
where the Hermite polynomial method is applied.

V. NUMERICAL RESULTS

In this section, we conduct numerical simulations to com-
pare the proposed recovery scheme with existing results using
constant [27] and random [45], [46] thresholds in both station-
ary and non-stationary scenarios. Additionally, we validate the
accuracy of our MSE analysis. Each result represents a Monte
Carlo simulation based on 105 independent tests.

A. Usefulness of Exact Threshold Values

We commence our simulation by examining the benefits of
using the exact values of the thresholds over their statistical
properties to decrease the MSE. Here we establish σ1 at 0.7, σ2

at 0.9, and σ12 at 0.25, and the number of samples N to vary
from 1000 to 3000. The threshold adheres to a Gaussian dis-
tribution N (0.512, 0.1I2). The difference is that our proposed
method uses the exact values of the threshold, whereas [45]
perceives the thresholds as random and utilizes their statistical
attributes. As the outcome in Fig. 3 reveals, the MSEs of σ1, σ2

and σ12 all undergo a reduction, thus affirming the advantage
of employing exact threshold values. This superiority arises
from the fact that exact values inherently contain more useful
information than statistical properties, thereby facilitating a

Fig. 3. Mean squared error versus number of samples.

more accurate and efficient estimation process that leads to a
reduction in MSE.

B. Comparison of Mean Squared Errors

Subsequently, we compare the overall MSE of our pro-
posed method with [27], [45], [46] in both stationary and non-
stationary cases. We begin with the more general non-stationary
case. In Fig. 4(a), the population parameters are chosen as σ1 =
0.25, σ2 = 0.6, and σ12 =−0.08, and the number of samples is
N = 1000. Our approach employs a threshold that varies from
0.1 to 1, with increments of 0.1, and each value is maintained for
1/10 of the sampling period. The constant threshold approach
takes a different value between 0.1 and 1 for each simulation.
For the random threshold method, the thresholds are combined
with a dithering signal following N (02, 0.15 · I2). We plot the
total MSE of σ1, σ2, and σ12. The results show that the time-
varying threshold provides a lower MSE than any constant
threshold value, as it can effectively estimate parameters over a
wider range. It also outperforms the random threshold approach
as it exploits the exact values of the threshold rather than their
statistical properties.

Next, we compare our method with [27] and [46] in the
context of stationary signals. Specifically, the covariance matrix
of stationary signals is a Toeplitz matrix, and we have set its
first column to [1,−0.3, 0.1, 0]T . For our method, the stationary
property is exploited by averaging the elements on each diag-
onal of the estimated covariance matrix. The threshold of our
method is set as linearly spaced within the range of 0.2 to 0.3,
comprised of 10 points, each lasting for 1/10 of the sampling
period. We collect the total MSE of the 4 parameters and the
result is plotted in Fig. 4(b). Yet again, we observe that our
proposed method excels both constant and random threshold ap-
proaches across any threshold value. However, the performance
improvement decreases compared with the non-stationary case.
This effect will be elaborated upon in Subsection D.

C. Influence of Correlation Coefficient

Next, we examine the impact of the correlation coefficient
on estimation accuracy. We set σ1 = 0.25 and σ2 = 0.6, while
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Fig. 4. Mean squared error versus number of samples.

the correlation coefficient ranges from −0.95 to 0.95, and the
number of samples is still N = 1000. The constant thresh-
old approach employs a threshold value of 0.5, while the
dithering signal corresponding to the random threshold ap-
proach and the threshold for our approach remain as in the
previous experiment.

Compared to fixed or random thresholds, our method gener-
ally yields smaller MSE and demonstrates greater robustness,
as shown in Fig. 5. The dithering approach is also more stable
than the constant threshold although it yields a higher MSE
on average.

D. Influence of Variance Unevenness

As illustrated in Fig. 1, the optimal threshold for variance
estimation is approximately 1.6 times the standard deviation.
Therefore, different variances will make the estimation more
challenging for a constant threshold. In the next experiment, we
set σ1 = 0.6 + δ and σ2 = 0.6− δ. The correlation coefficient
is set to 0.5 and N = 1000.

Fig. 5. Mean squared error versus correlation coefficient.

Fig. 6. Mean squared error versus variance separation level.

It is clear that all three approaches experience degrada-
tion in performance as the level of unevenness increases, as
Fig. 6 shows. However, the time-varying threshold approach
demonstrates the smallest increase in estimation error, which
highlights its robustness when estimating covariance matri-
ces with diverse parameters, which is a common in real-
world applications.

E. Influence of Threshold Strategy

Now, we investigate the impact of the threshold strategy on
our proposed time-varying known threshold approach. Specif-
ically, we study two aspects: the range window and the res-
olution of the threshold. For this purpose, we set σ1 = 0.5,
σ2 = 0.7, and σ12 = 0.08. The threshold window is in the form
of [0.1 + δ, 1 + δ], with δ ranging in a linspace between [0, 0.8]
with a length of 10. We experiment with a high-resolution
strategy with 10 different threshold values, as well as a low-
resolution strategy with 3 values. A total of N = 3000 samples
are collected. The results are presented in Fig. 7, indicating
that the MSE of σ1 and σ2 in the l = 10 case is relatively
stable, while that in the l = 3 case exhibits more fluctuations.
Interestingly, the MSE of σ12 in the l = 10 case increases more
quickly than in the l = 3 case. This is because the l = 3 case
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Fig. 7. Mean squared error versus threshold shift level.

TABLE I
ABSOLUTE INITIAL GRADIENT AND MSE COMPARISON BETWEEN

JOINT AND SEPARATE MLES

Largest gradient MSE (Separate) MSE (Joint)

σ1 8.382× 10−3 2.291× 10−4 2.241× 10−4

σ2 9.213× 10−4 1.024× 10−3 1.023× 10−3

σ12 8.496× 10−7 2.160× 10−4 2.137× 10−4

retains more low thresholds as δ increases. Therefore, in prac-
tice, it is important to set a portion of low thresholds to improve
covariance recovery. Moreover, the analysis reveals that the
original setting with δ = 0, where the threshold ranges linearly
between 0.1 and 1 with l = 10, offers robust performance for
all σ1, σ2 and σ12, thus presenting itself as an effective choice
in practical applications.

F. Influence of Joint MLE

In this subsection, we verify the effectiveness of estimating
variances separately versus seeking the joint MLE. We collect
the largest gradients that emerged in the iterative procedure
in (65) and compare the MSE with and without this process.
The results are presented in Table I for σ1 = 0.25, σ2 = 0.6, ρ=
0.5, and N = 1000. We observe that even the largest gradients
exhibit negligible values, indicating that the iterative process
for joint MLE has a minimal impact on the estimation result.
Furthermore, the initial estimates provide nearly identical MSE
values as the joint MLE, implying that the iterative process for
joint MLE can be safely omitted without any adverse effects on
performance as shown in Appendix D.

G. Theoretical Mean Squared Error

Now we examine the accuracy of the theoretical MSE of
the variance estimator and covariance estimator obtained by
inverting the FIM in (70). The population parameters are set
as σ1 = 0.8, σ2 = 0.9, σ12 = 0.25, and N = 1000. We begin
by investigating the theoretical performance of our approach in
Fig. 8(a), where the sampling thresholds remain unchanged as
previously. The result corresponding to the constant threshold

Fig. 8. Mean squared error versus number of samples.

is illustrated in Fig. 8(b). It is worth noting that the covariance
matrix of the dithering signal in the random threshold approach
can be incorporated into that of the signal part, thus, the perfor-
mance of the random threshold approach is predictable by the
result of the constant threshold approach, eliminating the need
for a different simulation.

H. DOA Estimation of Coherent Sources

Finally, we assess the performance of the three methods in a
real-world application, namely, the DOA estimation of coherent
sources. The covariance matrix is first reconstructed using each
of the three methods, and then processed by the EPUMA [20]
algorithm. A total of 6 antennas are considered and there are
three sources located at 15◦, 45◦, and 75◦, with a signal-to-
noise-ratio (SNR) of 20dB. The source signal is generated from
a circular complex Gaussian distribution, wherein the first two
sources are coherent, while the last source is independent of
the first two. The number of samples is 10000, and a total of
20 simulations were conducted. For comparative purposes, we
also consider a one-bit DOA estimation method designed for
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Fig. 9. Comparison of estimated DOA.

zero thresholds, as proposed by [64]. Fig. 9 shows that our
time-varying threshold approach provides the most accurate and
reliable results compared to the constant threshold and random
threshold methods. This is due to the fact that the parameters
of the actual covariance matrix can span a wide range, making
robustness a crucial factor in ensuring estimation precision.
Additionally, it is observed that the zero-threshold method pro-
duces very stable estimates, but the DOA of the last source
exhibits a bias. This occurs because, in the case of correlated
sources, the diagonal elements of the covariance matrix become
non-uniform, and the zero-threshold hinders their estimation.
This insight underscores the practical benefits of employing
non-zero thresholds.

VI. CONCLUSION

The results of this article demonstrate the importance of
threshold selection in one-bit estimation of covariance matrices.
By examining the limitations of a static threshold approach,
a novel time-varying threshold-based recovery scheme is de-
veloped to achieve improved accuracy in the estimation of
covariance matrices. The superior performance is demonstrated
through both theoretical analysis and numerical simulations,
and the results show significantly reduced MSE and enhanced
robustness in complex scenarios. This study opens the door for
future research to further optimize the threshold selection based
on the derived theoretical results of the MSE. The results of this
study also have a wide range of potential applications in many
areas, including array processing and communications.

APPENDIX A
PROOF OF (22)

The first- and second-order derivatives of h(a) are

h′(pi) =− v

[Q−1(pi)]2
∂Q−1(pi)

∂pi
, (74)

h′′(pi) =
v

[Q−1(pi)]3

(
2

[
∂Q−1(pi)

∂pi

]2
−Q−1(pi)

∂2Q−1(pi)

∂p2i

)
.

(75)

Using the formulas of the derivative of inverse functions,
we have:

∂Q−1(a)

∂a
=

1

Q′(Q−1(a))
, (76)

∂2Q−1(a)

∂a2
=

Q′′(Q−1(a))

[Q′(Q−1(a))]3
. (77)

Now, taking into consideration that

Q−1(pi) =
v

σi
, (78)

and

Q′(a) =
∂Q(a)

∂a
=− 1√

2π
exp

(
−a2

2

)
, (79)

Q′′(a) =
∂2Q(a)

∂a2
=

a√
2π

exp

(
−a2

2

)
, (80)

the derivatives become

∂Q−1(pi)

∂pi
=−

√
2π exp

(
v2

2σ2
i

)
, (81)

∂2Q−1(pi)

∂p2i
=

2πv

σi
exp

(
v2

σ2
i

)
. (82)

Substituting (81), (82), and (78) into (74) and (75) yields

h′(pi) =

√
2πσ2

i

v
exp

(
v2

2σ2
i

)
, (83)

h′′(pi) = exp

(
v2

σ2
i

)(
4πσ3

i

v2
− 2πσi

)
. (84)

APPENDIX B
PROOF OF LEMMA 2

We first establish the first-order Taylor’s expansion p12 at p̂12:

p̂12 = p12(σ̂1, σ̂2, σ̂12)

≈ p12(σ1, σ2, σ12) +
∂p12
∂σ1

(σ̂1 − σ1)

+
∂p12
∂σ2

(σ̂2 − σ2) +
∂p12
∂σ12

(σ̂12 − σ12). (85)

Rearranging terms, we get:

σ12 − σ̂12

≈ ∂σ12

∂p12

[
p12 − p̂12 −

∂p12
∂σ1

(σ1 − σ̂1)−
∂p12
∂σ2

(σ2 − σ̂2)

]
,

(86)

where we have used the inverse function rule. In the previous
subsection, we obtained

σi − σ̂i = h′(pi)(pi − p̂i) +O((pi − p̂i)
2), i= 1, 2. (87)
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Combining (86) and (87) we have the following linear function:

σ12 − σ̂12 ≈
∂σ12

∂p12

[
p12 − p̂12 −

∂p12
∂σ1

h′(p1)(p1 − p̂1)

− ∂p12
∂σ2

h′(p2)(p2 − p̂2)

]
= b [p1 − p̂1, p2 − p̂2, p12 − p̂12]

T
. (88)

Moreover, since

p12 =

∫ ∞

v
σ1

∫ ∞

v
σ2

f (x1, x2|ρ) dx1dx2, (89)

the partial derivative ∂p12/∂σ1 is computed via the follow-
ing integration:

∂p12
∂σ1

=
v

σ2
1

∫ ∞

v
σ2

f

(
v

σ1
, x2

∣∣∣ρ) dx2

− ρ

σ1

∂

∂ρ

∫ ∞

v
σ1

∫ ∞

v
σ2

f (x1, x2|ρ) dx1dx2

=
v

σ2
1

1√
2π

exp

(
− v2

2σ2
1

)
Q

(
v/σ2 − ρv/σ1√

1− ρ2

)

− ρ

σ1
f

(
v

σ1
,
v

σ2

∣∣∣ρ)

=
1

σ1
g

(
v

σ1
,
v

σ2
, ρ

)
, (90)

where we have used Leibniz integral rule and also (52) to
compute the last term. Similarly, we could obtain ∂p12/∂σ2.
Finally, and using again the derivative ∂p12/∂ρ that has been
calculated in (52), it is straightforward to obtain

∂p12
∂σ12

=
∂p12
∂ρ

∂ρ

∂σ12
=

1

σ1σ2
f

(
v

σ1
,
v

σ2

∣∣∣ρ) . (91)

APPENDIX C
PROOF OF (42)

As p̂1, p̂2 and p̂12 are scaled binomial random variables, the
diagonal entries of R are easily determined as:

[R]1,1 =
p1 − p21

N
, (92)

[R]2,2 =
p2 − p22

N
, (93)

[R]3,3 =
p12 − p212

N
. (94)

The covariance between p̂1 and p̂12 is

C(p̂1, p̂12) = E[p̂1p̂12]− p1p12

= E[N1N12]/N
2 − p1p12, (95)

where N1 =Np̂1 and N12 =Np̂12. The value of E[N1N12] is

E[N1N12] =

N∑
k,l=1

E

[
x1(k) + 1

2

x1(l) + 1

2

x2(l) + 1

2

]

=

N∑
k=1

E

[(
x1(k) + 1

2

)2
x2(k) + 1

2

]

+

N∑
k,l=1
k �=l

E

[
x1(k) + 1

2

x1(l) + 1

2

x2(l) + 1

2

]

=Np12 +N(N − 1)p1p12

=N2p1p12 +Np12(1− p1), (96)

where we have used the independence between x1(k) and x2(l).
Therefore, the covariance becomes

C(p̂1, p̂12) =
p12(1− p1)

N
. (97)

Similarly, we can obtain

C(p̂2, p̂12) =
p12(1− p2)

N
. (98)

Finally, since E[N1N2] is

E[N1N2] =

N∑
k,l=1

E

[
x1(k) + 1

2

x2(l) + 1

2

]

=

N∑
k=1

E

[
x1(k) + 1

2

x2(k) + 1

2

]

+

N∑
k,l=1
k �=l

E

[
x1(k) + 1

2

x2(l) + 1

2

]

=Np12 +N(N − 1)p1p2, (99)

where we have used again the independence between x1(k) and
x2(l), the last covariance is

C(p̂1, p̂2) = E[N1N2]/N
2 − p1p2

=
p12 − p1p2

N
. (100)

The proof is complete.

APPENDIX D
PROOF OF THE VANISHING GRADIENT WITH SMALL

NUMBER OF SUB-INTERVALS

Let us denote the original estimates by θ̂, obtained in
Sections IV-A and IV-B, and the joint MLE by θ̂

′
, obtained in

Section IV-C after the gradient-based algorithm converges. We
start by considering the first sub-interval, which is of length n
and define the following random variables:

K1 =

∑n
t=1[x1(t) + 1][x2(t) + 1]

4n
, (101)

K2 =

∑n
t=1[x1(t) + 1][x2(t)− 1]

4n
, (102)

K3 =

∑n
t=1[x1(t)− 1][x2(t)− 1]

4n
, (103)

K4 =

∑n
t=1[x1(t)− 1][x2(t) + 1]

4n
, (104)

which estimate the probability of x(t) = εi, with

ε1 = [+1,+1]T , ε2 = [+1,−1]T ,

ε3 = [−1,−1]T , ε4 = [−1,+1]T . (105)

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on November 10,2023 at 16:50:35 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: COVARIANCE MATRIX RECOVERY FROM ONE-BIT DATA WITH NON-ZERO QUANTIZATION THRESHOLDS 4073

Then, the derivative of the log-likelihood with respect to σ1

evaluated at the original estimate is
n∑

t=1

∂L(x(t);θ)
∂σ1

∣∣∣∣∣
θ=θ̂

=
4∑

i=1

nKi
∂L(x= εi;θ)

∂σ1

∣∣∣∣∣
θ=θ̂

=
4∑

i=1

nKi

qi
g

(
v(t)εi,1

σ̂1
,
v(t)εi,2

σ̂2
, ρ̂

)
,

(106)

where ρ̂= σ̂12/σ̂1σ̂2, and

qi =

∫ ∞

τiv1(t)

σ̂1

∫ ∞

τiv2(t)

σ̂2

f
(
y1, y2

∣∣∣τiρ̂) dy1dy2, (107)

is the probability that x= εi, with τi = εi,1εi,2. Recalling the
definition of g(z1, z2, ρ) in (40), it is easily seen that

g(κ1, κ2, �) =−g(−κ1, κ2,−�). (108)

Therefore, it can be shown that
n∑

t=1

∂L(x(t);θ)
∂σ1

∣∣∣∣∣
θ=θ̂

= n

(
K1

q1
− K4

q4

)
g

(
v(t)

σ̂1
,
v(t)

σ̂2
, ρ̂

)

+n

(
K2

q2
− K3

q3

)
g

(
v(t)

σ̂1
,−v(t)

σ̂2
,−ρ̂

)
.

(109)

Since (nK1, nK2, nK3, nK4) follows a multinomial distri-
bution with probabilities (q1, q2, q3, q4), the random variables
K1

q1
, K2

q2
, K3

q3
, K4

q4
follow asymptotically a Gaussian distribution

N (14,C), where

[C]i,j =

{
1−qi
nqi

, i= j,

− 1
n , i 	= j.

(110)

Then, we have
K1

q1
− K4

q4
=O

(
n− 1

2

)
, (111)

K2

q2
− K3

q3
=O

(
n− 1

2

)
, (112)

and (109) becomes
n∑

t=1

∂L(x(t);θ)
∂σ1

∣∣∣∣∣
θ=θ̂

=O
(
n

1
2

)
. (113)

Note, that this derivative is not zero because σ̂1 was obtained
using the likelihood of x1(t), t= 1, . . . , N . To proceed, we
apply a first-order Taylor’s expansion to the derivative of the
log-likelihood, which results in

N∑
t=1

∂L(x(t);θ)
∂σ1

∣∣∣∣∣
θ=θ̂

′
=

N∑
t=1

∂L(x(t);θ)
∂σ1

∣∣∣∣∣
θ=θ̂

+ (σ̂′
1 − σ̂1)

N∑
t=1

∂2L(x(t);θ)
∂σ2

1

∣∣∣∣∣
θ=θ̂

.

(114)

Since σ̂′
1 is the solution to the equation

N∑
t=1

∂L(x(t);θ)
∂σ1

∣∣∣∣∣
θ=θ̂

′
= 0, (115)

we have

σ̂′
1 − σ̂1 ≈−

∑N
t=1

∂L(x(t);θ)
∂σ1

∣∣∣
θ=θ̂∑N

t=1
∂2L(x(t);θ)

∂σ2
1

∣∣∣
θ=θ̂

. (116)

Now we investigate the second-order derivative. When n is
large, it becomes

n∑
t=1

∂2L(x(t);θ)
∂σ2

1

∣∣∣∣∣
θ=θ̂

→ nE

[
∂2L(x(t);θ)

∂σ2
1

∣∣∣∣
θ=θ̂

]
, (117)

which is of order n since E
[
∂2L(x(t);θ)/∂σ2

1 |θ=θ̂

]
=O (1).

Therefore, the numerator in (116) is a summation of l terms
of order n

1
2 while the denominator is a summation of l terms

of order n, where l is the number of sub-intervals. As a result,
we obtain

σ̂′
1 − σ̂1 ≈O

(
n− 1

2

)
. (118)

This implies that when l is small and n=N/l is large, the esti-
mated σ1 in the joint MLE is close to the initial estimate. Sim-
ilarly, we can obtain σ̂′

2 − σ̂2 ≈O(n− 1
2 ). Furthermore, since

σ̂12 is obtained using the two-channel data by solving

∂L(X; σ̂1, σ̂2, σ12)

∂σ12

∣∣∣∣
σ12=σ̂12

= 0, (119)

its initial gradient is already 0. With σ̂1 and σ̂2 remaining almost
unchanged, the gradient of σ12 is also negligible. Then, the

original estimate θ̂ and the joint MLE by θ̂
′

are close.

APPENDIX E
PROOF OF THEOREM 1

We first prove that, for each sample vector x(t), (t=
1, · · · , N), the regularity condition holds, namely:

E

[
∂L(x(t);θ)

∂θ

]
= 0. (120)

Then the result naturally holds for the collection of all samples.
At first, we have

E

[
∂L(x(t);θ)

∂σ1

]

=
∑

x(t)∈{±1,±1}
ot(θ)

∂L(x(t);θ)
∂σ1

=
∑

x(t)∈{±1,±1}

1

σ1
g

(
v(t)x1(t)

σ1
,
v(t)x2(t)

σ2
, x1(t)x2(t)ρ

)
.

(121)

Taking into account (108), it can be shown that

∂L(x(t);θ)
∂σ1

∣∣∣∣
x(t)=ε1

= −∂L(x(t);θ)
∂σ1

∣∣∣∣
x(t)=ε4

,

∂L(x(t);θ)
∂σ1

∣∣∣∣
x(t)=ε2

= −∂L(x(t);θ)
∂σ1

∣∣∣∣
x(t)=ε3

, (122)
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which yields E [∂L(x(t);θ)/∂σ1] = 0. This verifies the regu-
larity condition for σ1, which can be easily extended to σ2.
Similarly, we have

E

[
∂L(x(t);θ)

∂σ12

]
=

∑
x(t)∈{±1,±1}

ot(θ)
∂L(x(t);θ)

∂σ12

=
∑

x(t)∈{±1,±1}

x1(t)x2(t)

σ1σ2
f

(
v(t)x1(t)

σ1
,
v(t)x2(t)

σ2

∣∣∣ρ) .

(123)

Since f (z1, z2|ρ) = f (−z1, z2| − ρ), following the same pro-
cess as above, we can prove that the summation in (123) is 0.
Given the above, and by referencing [60, Appendix 3A], we can
conclude that

E

[
∂L(X;θ)

∂θ

∂L(X;θ)

∂θT

]
=−E

[
∂2L(X;θ)

∂θ∂θT

]
. (124)

We next assert the consistency of the proposed estimator. Our
proof strategy mirrors that of [60, Appendix 7B]. Specifically,
for a large n and the kth sub-interval, we can write:

1

n

ηk∑
t=νk

ln okt (θ)→ E
[
ln okt (θ)

]
=

∑
x∈{±1,±1}

okt (θ0) ln o
k
t (θ), (125)

where νk = (k − 1)n, ηk = kn and okt denotes the likelihood
function on the kth subinterval. Thus, we arrive at:

L(x(t);θ) =
l∑

k=1

∑
x∈{±1,±1}

okt (θ0) ln o
k
t (θ). (126)

Let us consider two estimators: θ̂1 = θ0 and θ̂2 	= θ0. Utilizing
the non-negativity of the Kullback-Leibler divergence, we have:∑

x∈{±1,±1}
okt (θ0) ln

okt (θ0)

okt (θ̂2)
≥ 0, (127)

which leads to:∑
x∈{±1,±1}

okt (θ0) ln o
k
t (θ0)≥

∑
x∈{±1,±1}

okt (θ0) ln o
k
t (θ̂2).

(128)

From this, we can infer that θ̂1 = θ0 maximizes okt (θ) for
k = 1, · · · , l, and subsequently, the likelihood function in (126).
Therefore, the MLE converges to the true parameter, proving
the estimator’s consistency.

Applying the first-order Taylor’s expansion, we get:

∂ ln p(X;θ)

∂θ

∣∣∣∣
θ=θ̂

=
∂ ln p(X;θ)

∂θ

∣∣∣∣
θ=θ0

+
∂2 ln p(X;θ)

∂θ∂θT

∣∣∣∣
θ=θ̃

(
θ̂ − θ0

)
, (129)

where θ0 < θ̃ < θ̂. Using its consistency property, it is evident
that θ̃ → θ0. Moreover, from

∂ ln p(X;θ)

∂θ

∣∣∣∣
θ=θ̂

= 0, (130)

we derive

θ̂ − θ0 =−
[
∂2 ln p(X;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

]−1
∂ ln p(X;θ)

∂θ

∣∣∣∣
θ=θ0

.

(131)

With n→∞, it follows that

−
ηk∑

t=νk

∂2 ln p(x(t);θ)

∂θ∂θT
→−E

[
ηk∑

t=νk

∂2 ln p(x(t);θ)

∂θ∂θT

]

= Fk(θ), (132)

where Fk(θ) is the FIM in the kth subinterval and we have used
(124). Thus,

−
[
∂2 ln p(X;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

]
→

l∑
k=1

Fk(θ0) = F(θ0). (133)

From (131), it can be shown that

Q= E

[
(θ̂ − θ0)(θ̂ − θ0)

T
]
= F(θ0)

−1, (134)

which completes the proof.
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