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Online Detection and SNR Estimation in
Cooperative Spectrum Sensing

Jesus Perez ™, Javier Via

Abstract— Cooperative spectrum sensing has proved to be an
effective method to improve the detection performance in cogni-
tive radio systems. This work focuses on centralized cooperative
schemes based on the soft fusion of the energy measurements
at the cognitive radios (CRs). In these systems, the likelihood
ratio test (LRT) is the optimal detection rule, but the sufficient
statistic depends on the local signal-to-noise ratio (SNR) at the
CRs, which are unknown in most practical cases. Therefore,
the detection problem becomes a composite hypothesis test. The
generalized LRT is the most popular approach in those cases.
Unfortunately, in mobile environments, its performance is well
below the LRT because the local energies are measured under
varying SNRs. In this work, we present a new algorithm that
jointly estimates the instantaneous SNRs and detects the presence
of primary signals. Due to its adaptive nature, the algorithm is
well suited for mobile scenarios where the local SNRs are time-
varying. Simulation results show that its detection performance
is close to the LRT in realistic conditions.

Index Terms— Cooperative spectrum sensing, energy detection,
expectation-maximization (EM) algorithm, maximum likelihood,
probabilistic mixture models.

I. INTRODUCTION

PECTRUM sensing is a key operation in cognitive radio.

Through spectrum sensing the cognitive radios (CRs) aim
at detecting frequency bands that are not being used by the
primary network. The performance of spectrum sensing is
limited by shadowing and multi-path effects in the chan-
nels between the primary users (PUs) and the CRs (sensing
channels). By using cooperative spectrum sensing (CSS) the
impact of those effects can be mitigated efficiently by the
inherent multiuser/spatial diversity of the CR network [1]-[3].
In centralized CSS, the CRs individually perform local sensing
and report their sensing output to a fusion center (FC) through
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a dedicated control channel. Then, the FC combines the
information received from the CRs to make a decision on the
presence of primary signals in the given frequency band.

This work considers CSS based on the soft combination
of the energy levels measured by single antenna CRs. Unlike
other detection techniques, energy detection does not require
prior knowledge of PU signals characteristics. This fact,
together with its simplicity and general applicability, makes
energy detection the most popular technique in CSS [1]-[5].

A well-known alternative to soft combining is the so-called
hard combining scheme, where each CR makes its own deci-
sion, according to the local energy measurements, and reports
it to the FC. Then, the FC makes the final decision combining
the CRs decisions. In general, soft fusion achieves better
detection performance. Even equal-gain combining (EGC),
the combining scheme that simply adds the local energy
measurements [6], outperforms hard fusion in most cases [7].
The EGC detector is also called sum-fusion detector in the
technical literature [8]. Quantized soft combining has been
proposed as a compromise between soft and hard fusion
[71, [9]-[11]. In this case, the CRs report quantized
measurements of the energy to the FC.

In soft energy fusion, the likelihood ratio test (LRT) is
optimal when the FC knows the instantaneous signal-to-noise
ratio (SNR) at the CRs [12], [13]. The LRT sufficient statistic
is a linear combination of the measured energy levels at the
CRs, where the coefficients are functions of the local SNRs
[31, [4], [7], [14]. This is a major drawback because the
FC needs to know the SNRs to apply the LRT, which are
unknown in most practical cases. EGC does not require this
SNR knowledge, but it performs significantly worse than the
LRT, especially in low SNR scenarios [7]. Moreover, conven-
tional SNR estimation methods are unfeasible in the spectrum
sensing context because it is unknown when the primary
signals are present in the channel. This is a vicious circle;
the detection test requires estimating the SNRs and estimating
the SNRs requires knowing whether the primary signals are
present or absent. This problem becomes even more critical
when the PU activity pattern is highly dynamic with short idle
and busy periods. Since the SNRs are unknown, the detection
problem becomes a composite hypothesis test [12], [13]. The
generalized LRT (GLRT) is the most popular approach in
those cases. In the GLRT, the SNRs values in the LRT are
replaced by their maximum likelihood estimates (MLE) under
the assumption that the primary signals are present in the
channel. But in mobile environments, the local SNRs change
between consecutive energy measurements, so, in principle,
their MLE should be computed only from the current one.
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This leads to poor estimates of the instantaneous SNRs, which
results into a GLRT performance well below that of the
LRT.

A common way to circumvent the estimation of the instan-
taneous SNRs is to assume a specific distribution of the
sensing channels with unknown parameters, which are easier
to estimate than the instantaneous SNRs. Also, the channels’
responses at different times are assumed to be independent.
Following this approach, different soft fusion detectors have
been proposed [8], [15]-[17]. Those detectors are suited for
the assumed channel distribution, but they lack the ability to
adapt to a changing environment with arbitrary time-correlated
channels.

In [18], the authors combined batch algorithms with
time-sliding windows to sequentially estimate the local SNRs
from the energy measurements. The drawback is that the
energy measurements in the sliding window have the same
weight in the SNRs estimates, regardless of when they were
measured. The decision threshold setting was not addressed.

Also related to the present work is [19], where a cooperative
sequential detection scheme, based on the sequential probabil-
ity ratio test (SPRT) [20], is presented. The CRs report their
local log-likelihood ratio (LLR) of every acquired sample, and
the FC sequentially accumulates the log-likelihood statistics
and performs the SPRT. The authors present a method to
implement the scheme when the signal models have unknown
parameters. This approach to CSS is quite different from
ours. Due to the SPRT nature, the goal is to minimize the
number of signal samples before making the decision subject
to constraints on the probability of false alarm and missed
detection. Moreover, the CRs must report the LLR of every
acquired sample to the FC. Also based on the SPRT, [21]
proposes a decentralized cooperative detection scheme where
the CRs do not report their LLRs in parallel to the FC, but
they do it sequentially.

The SNR estimation in the spectrum sensing context has
been addressed considering multi-antenna settings [22], and
fractional-sampling [23]. Although from a signal processing
point of view, these schemes are equivalent to a cooperative
system, the fundamental difference is the information available
to estimate the SNR. In those schemes, the SNR is estimated
by a single CR from all signal samples. In our case, is the FC
who estimates the SNRs from the energy measurements at the
CRs.

Contribution: In this work, we propose a novel approach
to CSS based on a probabilistic mixture model [24], [25] of
the energy measurements. The model has two components
associated with the presence or absence of primary signals.
The energy measurements are observed variables, the channel
occupancy is a latent (hidden) variable, and the instantaneous
SNRs are unknown model parameters. From this model,
we derive an online algorithm that jointly estimates the instan-
taneous SNRs and detects the presence of primary signals from
the local energy measurements at the CRs. It is an online clas-
sification EM (expectation-maximization) algorithm [26]-[28].
We derive simple closed-form expressions for both the E-step
and the M-step taking into account the exact distribution of
the energy measurements.
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In realistic scenarios, the sensing channels, and thus the
SNRs, change slowly between consecutive sensing periods.
Then, the estimates of the SNRs can be improved taking into
account not only the current energy measurements but also
previous ones. The algorithm does that by implicitly assigning
different weights to the energy observations according to the
time when they were measured. In the extreme case of consid-
ering only the last energy measurements, the algorithm reduces
to the one-shot GLRT. The proposed algorithm works well
for any PU activity pattern, even when it exhibits short busy
and idle periods. Simulation results show that its estimation
performance is excellent in practical cases, so its detection
performance is close to that of the LRT detector. In most
realistic scenarios, the proposed method clearly outperforms
the one-shot GLRT.

The algorithm is fully blind, that is, the only input is the
energy measurements from the sensors. It is computationally
simple, and the processing of each energy measurement takes
a fixed time. The energy measurements are processed sequen-
tially in time so it does not need to store them. Therefore,
the proposed method requires very little (and constant) mem-
ory use. Since it adapts to the instantaneous SNRs, the pro-
posed detector is valid for any distribution of the sensing
channels, even when they are different for each CR. To the
best of our knowledge, no online detection algorithm with
the above characteristics has been proposed in the context of
energy spectrum sensing. The fact that the detection algorithm
also estimates the instantaneous SNRs is a distinct feature that
differentiates it from other existing CSS detectors.

We also propose a new method to approximate the distri-
bution of the test statistic of the LRT and of the proposed
detector. It is a moment-matching method [29], [30], which
tightly approximates, under both hypotheses, the distributions
of the test statistic by Gamma distributions with properly
selected parameters. These depend on the cumulants of the
true distribution, which can be calculated in closed form for
the null (idle) hypothesis, and only depending on the SNRs
for the alternative (busy) hypothesis. Thus, we can accurately
set the decision threshold for a prescribed probability of false
alarm at each time.

Notation: Throughout this paper we use bold-face letters
for vectors and light-face letters for scalar quantities. The
superscript x! refers to the transpose of x. 1 denotes
max{z,0} and @ refers to the estimate of parameter 6.
X ~ ON(p, o?) indicates that X is a complex circular
Gaussian random variable with mean p and variance o2, and
X ~ X3 indicates that X is a chi-squared random variable with
k degrees of freedom. Finally, E[X] denotes the expectation
of the random variable X.

Paper Organization: The remainder of this paper is orga-
nized as follows. Section II describes the system model
and derives the true distribution of the energy measure-
ments. Afterwards, Section III derives the cooperative LRT,
the one-shot GLRT and the EGC detector. The proposed
algorithm is presented in Section IV. Section V addresses the
derivation of the decision thresholds for the aforementioned
detectors. Section VI presents simulations results that show
the estimation and detection performance of the proposed
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algorithm and compare it with those of the other methods.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We consider a single PU operating in a given frequency
channel. Let s € {0,1} indicate the state of the PU, where
s = 1 when it is transmitting and s = 0 when it is not.

A. Energy Estimates

Let us consider a sensing network with J cooperative CRs.
The m-th baseband complex signal sample at CR j is

Ho : zj(m) = r;(m),
Ha 2 zj(m) = hj y(m) +7j(m), (1

where Hy and H; denote the hypotheses s = 0 and
s = 1, respectively, y(m) is the signal transmitted by the
PU, h; denotes the complex channel gain from the PU to
the CR j, and 7;(m) is the noise at the CR j. The noise is
assumed to be a zero-mean, white, complex circular Gaussian
process with variance 032. We also model y(m) as zero-mean
circular complex Gaussian process, which is particularly accu-
rate if the PU transmits multi-carrier modulated signals. This
is a standard assumption in the spectral sensing literature
[5], [7], [14]. Even if this is not the case, the Gaussian model
leads to tractable analysis and useful detectors. Since r;(m)
and y(m) are independent, we have

Hs i zj(m) ~ CN(0, 05 45 P [h[°), s=0,1, (2)

where P denotes the variance of y(m).
The normalized energy estimate at CR j is [4]

Z |25(m) P, 3)

Jml

where M is the number of signal samples used to estimate the
energy. We assume that the PU state does not change during
the sensing time interval when the signal samples are acquired.
This requires M to be relatively small. Notice that, to compute
the normalized energy (3), each CR has to know its noise
power, which is a common assumption in the CSS literature
(31, [51, [71, [11], [14], [16], [17], [31].

B. Distribution of the Energy Estimates

Considering (2) and (3), the energy estimates are random
variables with the following distribution [32],

1+595
2
where X ~ x3,, and g; = P |h;|?/o7 is the SNR at CR j
when the PU is active.
According to (4), the probability density function (pdf) of
e;, conditioned to s and gj, is

Hs:ej = s=0,1, 4)

eM—1 e
/ ex ( / > .6
I(M)(1+ s gj)M P 1+sg;j )
Notice that when s = 0 the pdf does not depends on g;.

f(ejls, g5) =

2523

Let e = [e1...ey]T be the vector whose entries are
the energy estimates at the CRs. Assuming that they are
independent (for a given s), the pdf of the energy vector will
be

J
f(els,g) H (ejls, g5), (6)
where g = [g1...9s]7 denotes the SNRs vector. Strictly

speaking, the energy estimates at different CRs are not condi-
tionally independent under H; because they depend somehow
on the signal transmitted by the PU (see (1)). In any case,
in the low and medium SNR regime, they can be considered
independent because the noise at the CRs are independent
and the sensing channels are different. Independence of the
energy measurements is a common assumption in the technical
literature [1], [7], [14].

III. COOPERATIVE DETECTORS

After each local measurement, the CRs report the energy
values (3) to the FC through the control channels, which are
assumed to be error-free. Once the measurements are available
at the FC, it decides on the presence of primary signals on the
channel.

A. LRT Detector

Assuming that the SNRs are known at the FC, the optimal
detector is the LRT [13]:

feHy)  flels=1.g) 7
F(elHo) ~ Flels=0.8) @

Considering (5) and (6), and taking logarithms, (7) can be
written as follows

5

where v rr = logyo + M Z}'le log(1+ g;). Notice that this
test statistic depends on the SNRs.

, 8
1+3 U'VLRT (8)

B. EGC Detector

The EGC, also called sum fusion detector, is the suboptimal
detector that simply adds up the energy measurements,

Zea

It does not require the FC to know the SNRs, but its
detection performance is typically poor when the SNRs are
low. On the other hand, we must point out that the EGC
detector tends to the LRT in the high SNR region, g; > 1.

YEGC- 9)

Ho

C. One-Shot GLRT Detector

When the primary SNRs are unknown, the problem becomes
a composite hypothesis test. The most popular approach
to these problems is the GLRT [13], where the unknown
parameters of the LRT are replaced by their MLE under
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both hypotheses. Then, taking into account that there are no
unknown parameters under Hj, the GLRT becomes

J ~

Hy
Y i P > qerrr, (10)
j=1 1495 #o

where g; denotes the ML estimate of g;, from e;, assuming
s =1, and is given by
g; = argmax f(ejls =1,g;).
920
Appendix A shows that

g5 = % (11)
From (4), the mean of e; under the null hypothesis is M.
Therefore, apart from the factor 1/M, the estimate g; is the
deviation of e; from its mean under Hj.
Substituting (11) into (10), after some algebraic manipula-
tions (see appendix B), the one-shot GLRT reduces to
J

(ej —M)+.

H1
> (e =M)" 2 qarrr. (12)
j=1 0

Unfortunately, the performance of this detector is poor
since the estimates §; are typically inaccurate. Notice that
the number of parameters to estimate (J) equals the number
of observations, and each parameter (g;) is estimated from
a single observation (e;). Also, M is typically small, so the
energy estimates are inaccurate. Moreover, the one-shot GLRT
lacks the ability to learn from past observations.

IV. EM-BASED DETECTOR

In many practical cases, the coherence time of the sensing
channels is of the order of the time elapsed between consec-
utive sensing periods. In those cases, g exhibits a significant
correlation at consecutive sensing periods. Then, g could be
better estimated by considering multiple energy measurements
rather than a single one, as in the one-shot GLRT. This is the
basis of the detector proposed in this section.

From (5) and (6), marginalizing out s, the pdf of the energy
vectors is

flelg) = ao flels =0) + a1 flels =1,8),

where a1 and ag = 1 — «y are the prior probabilities of
s = 1 and s = 0, respectively. In the spectrum sensing context,
a1 is known as the channel occupancy rate (COR), which is
assumed to be known by the FC. The COR estimation has
been an active research area in the last years, and a variety
of algorithms have been proposed [33]-[37]. The marginal
distribution, (13), can be viewed as a mixture model [24], [25]
with two components, f(els = 0) and f(e|s = 1,g), being
ap and «; the mixing coefficients. The energy measurements,
e, are observed (visible) variables, the PU state, s, is a
latent (hidden) variable, and the SNRs, g, are the unknown
model parameters.

13)

A. Online EM Algorithm

The expectation-maximization (EM) algorithm [38] is the
most popular method for ML estimation in mixture models
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with latent variables. Since the energy measurements arrive
at the FC sequentially, we focus on sequential EM methods,
being the most popular one the so-called Stepwise EM (SEM),
[25], [27], [28]. As we will see later, this algorithm is very well
suited to our problem because it leads to simple closed-form
expressions. Let x denotes the observed variables and y
the latent variables. The pair {x,y} is called the complete-
data. Given {x,y}, the SEM algorithm assumes that the
complete-data likelihood belongs to the exponential family,

Le(0) = h(x,y) exp (n(0)" ®(x,y)) /2(6),

where 6 denotes the set of unknown model parameters. The
terms h(x,y),n(0),®(x,y), and z(0) are called scaling
function, parameters function, sufficient statistic and partition
function, respectively.

According to the SEM algorithm, each time a new observa-
tion x,, is available, the estimate of the parameters is updated
as follows,

(14)

6,, = argmax 1n(0)" ¢, —log 2(0), (15)
0

where
¢n = (1 - /j‘n)(ﬁnfl + tn E |:(I)(Xn7yn)|xn;én71 . (16)

The parameter p, € (0,1) is the forgetting factor (also
called learning rate or stepsize) at time n. Different stepsize
sequences {/,} have been proposed for stationary scenar-
ios [25], [27], [28] where the unknown parameters 6 do
not change. In non-stationary scenarios, where the model
parameters @ are time-varying, a constant forgetting factor
n = p is typically used. The latter is our case because the
sensing channels are time-varying. The SEM algorithm runs a
single iteration each time a new observation x,, is available.
Each iteration comprises two steps: the computation of the
conditional expectation in (16), and the maximization in (15).
They are the so-called E-step and M-step, which give the
name to the algorithm. The E-step is aimed at incorporating
the information that is brought by x,, and the M-step is
a maximization program whose result is the update of the
parameters estimate én

For the problem at hand, the model parameters are the SNR
at the CRs (g), the observed variables are the energy measure-
ments (e), and the only latent variable is the PU state (s).
Appendix C shows that, given e and s, the complete-data
likelihood in our problem, L.(g), can be written in the
exponential form (14) where the vector of sufficient statis-
tic, the partition function and the parameters function are,
respectively

we.s) = (0,) 0 #le)=1.

s-e
J
szzl log(1 + g;)

(1+g1)7 ! (17)

(149,
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The scaling term h(e, s) (see (39) in Appendix C) does not
play any role in the algorithm.

Let ey, sn, g, denote the observed energy vector, the PU
state, and the SNR vector at sensing period n, respectively.
According to (15) and (16), each time a new energy vector e,
is observed, the current SNR vector is estimated as follows,

gn = argmax 1(g)" ¢, (18)
g>0
where
(bn = (1 - M)(ﬁnfl +upE [(I)(ena 5n)|en7gn71] . (19
Since the channels change over time, so do the

SNRs. Therefore, we consider a constant forgetting factor, g,
whose value must be selected according to how fast the SNRs
change between consecutive energy measurements.
Appendices D and E derive the following closed-form
expressions for the E-step (19) and the M-step (18):

o E-step:

T
where
by = (]- _/14) bn—1 +u §n7
anp = (1 - ﬂ) a, 1+ [ Sy €. (20)

The term §,, = P(s, = l|e,,&n—1) is the probability
that the PU was active when e,, was observed, given the
last estimate g,,_1. Notice that §,, can be considered as a
soft estimate of s,,. In the context of the EM algorithm,
Spn 1s usually called the responsibility that s,, = 1 for
observation e,,. In our case, it is given by

N 1
5= 2D

J N
1 T gna )M exp (=550 )
)

o M-step:

1 Qnp,j * .
An’:_ —=—M y :1,..., .
Gn.,j M<bn > J J.

Interestingly, when ¢ = 1, (22) reduces to the one-shot ML
estimates used in the GLRT (11).

Initialization: We propose to initialize the algorithm to
ag = 0,by = 0. Then, from (20) and (22), the first estimate of
the SNRs reduces to the one-shot ML estimate (11) employed
in the GLRT, that is

R 1
91,5 = M

(22)

(er;—M)*Y, j=1,...,J, (23)

regardless the value of ;4 and 51, as they cancel out in (22).
Interpretation: Assuming that the algorithm is initialized as
above, the terms b,, and a,, can be written as follows
n
b= p(1—p)" "5,

i=1
n

a, — Z/.L (1 — M)n_i 51' €e;.

i=1

(24)

2525

Then, substituting (24) into (22), the SNR estimates can be
written as follows

(

This shows that the contribution of a given energy
observation, e; ;, to the SNR estimate g, ; depends on its
responsibility, s;, and on the time when it was observed
(i through the term (1 — p)"™%).

o When p is close to 1 the algorithm tends to be memory-
less. It forgets previous energy observations, so the SNR
is mainly estimated from the last one (e, ;). Moreover,
the dominant term in (25) corresponds to ¢ = n, so the
SNR estimate tends to the one-shot ML estimate (11),

M=

(T—p)" " 5 (eij — M))+

n

1

gn,j = (25)

MY (- 5

i=1

. —~1 1
In.j = M (en,j — M)+ -

Therefore, apart from the factor 1/M, the SNR estimate
Jn.; 1s the deviation of e,, ; from its mean value under
the null hypothesis (M).

o On the other hand, when p tends to zero, we have

- +
2im i (eij — M)
T - @D
> i1 Si
Now, factor 1/M aside, the SNR estimate is the weighted
average of all energy deviations, where the weights are
the responsibilities. Therefore, g, ; averages the effective
energy deviations at the times the PU is estimated to have
been active.

(26)

n—0 i
M

In.j

B. Decision Rule

The responsibility (21) is an estimate of the probability that
the PU was active when e,, was observed. It can be used to
decide on the PU state [26]. Using Bayes’ theorem,

f(enlsn = 17%—1) aq
f(enmn—l) .
Similarly, the probability that the PU was inactive when e,,
was observed is

Sy = P(sn = 1|en7gn*1) =

flenlsn =0,0n-1) ap
flen]gn-1)
Then, the decision rule can be expressed as a function of
the responsibility as follows

1-35,= P(Sn = 0|en;gn71) =

§n (%)) 7;1
= — ’yo.
(1-35,) a1 7?0

f(en|5n = Lgn—l)
f(en|5n = 07@71,—1)
Substituting the expression of the responsibility (21)

into (28), after simple algebraic manipulations, the detection
rule reduces to

(28)

J

On—1,; M
E enj ——2— = ypur, (29)
= 1+ 9In—1,5 Ho

where vy = logyo + M 23.]:1 log(1 4 gn—1,5). Notice that
the detection rule has the same form as in the LRT (8), but

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on April 11,2022 at 09:33:03 UTC from IEEE Xplore. Restrictions apply.



2526

using the SNR estimates at the time the energy vector is
observed. Hereafter, we will refer to (29) as the EM detector.

Notice that the test statistic in (28) is a monotonic trans-
formation of the responsibility, so s, might be used as the
test statistic. Also, (29) allows us to compute the decision
threshold, in a similar way as in the LRT. This will be shown
in section V.

C. The Algorithm

In summary, each time the CRs report a new energy vector,
the FC first applies the decision rule. Then it updates the SNRs
estimate as it is shown in Algorithm 1. It is done in two steps:
the computation of the responsibility (E-step), and the update
of the SNRs estimate (M-step).

Algorithm 1 : EM Detection-Estimation

1: Input:  J, M, pu

2: First energy measurements: €3

3: Compute g; from (23)

4: Repeat for each energy measurement e,, n > 1
5:  Decision on the channel occupancy from (29)
6: E-step:

7: - Compute s,, from (21)

8

9

- Compute a,, and b,, from (20)
M-step:
10: - Update g,, from (22)

From a practical perspective, it is worth noting that each
iteration takes fixed time and requires constant memory use.

V. DECISION THRESHOLDS

To set the decision threshold we first analyze the distribution
of the test statistic of the detectors under the null hypothesis.
Afterwards, we describe how to set the decision thresholds
for a fixed false alarm probability, which is the most common
criterion in spectrum sensing.

A. Distribution of the Test Statistic

LRT Detector: From (4) and (8), the test statistic under the
null hypothesis is a weighted combination of J independent
chi-square random variables with 2M degrees of freedom,

J
=3 wX; w= (30)
j=1

2(1+g;)
The weighted sum of chi-square random variables does
not have a closed-form cumulative distribution function (cdf).
Accurate closed-form approximations have been proposed
in the technical literature (see [30] and references therein).
In this work, we adopt the Hall-Buckley-Eagleson approxima-
tion [29]. This is a moment-matching method that approxi-
mates the distribution of 7" by a gamma distribution with the
following cdf
(€29)

4k 8k3
Fr(y) = Fr(x ) (k—;(V — k1) + k;_22) ;
3
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where ki, ko and ks are the first three cumulants of T,
given by

J J J
ki =2M Y wj, ks =4M» w}, ks =16M Y w},
j=1 j=1 j=1
(32)

and the shape and scale parameters of the gamma distribution
are K = 4k3/k? and 0 = 2, respectively.

EGC Detector: Substituting (4) in (9) the distribution of the
EGC test statistic under the null hypothesis is chi-square with
2M J degrees of freedom. Therefore, it only depends on the
known parameters M and J.

GLRT Detector: Substituting (4) in (12), after simple alge-
braic manipulations, the test statistic of the GLRT under the
null hypothesis is distributed as follows

J +
1

2 (5XJ‘-M) ’

j=1

where, as above, X; ~ X% - Notice that the distribution is
independent of the SNRs. Since it only depends on known
parameters, M and J, it can be computed in advance.

EM Detector: Substituting (4) in (29), the test statistic under
the null hypothesis has the same form as in the LRT (8), but
now the weights are functions of the SNRs estimates at time
n —1 (i.e., at time n they are fixed and known quantities)

(33)

9n—1,5

w; = —Inhd 34
721+ g1 y) 34

Therefore, the distribution of the test statistic under the null
hypothesis can also be approximated by (31) with the weights
given by (34).

B. Decision Thresholds

From (31), the probability of false alarm of the LRT and
EM detectors, for a given threshold ~, will be

3
Pra(y) =1~ Fr(x.) (4k—k2(V — k1) + %) , (35)

3 3
where the cumulants, given by (32), are computed from
the weights in (30) and (34), respectively. Since Ppa(7y)
is monotonically decreasing, the threshold to guarantee a
prescribed probability of false alarm can be easily obtained
from (35) by using conventional root-finding algorithms like
bisection, secant, or Newton’s method. Notice that the decision
threshold depends on the actual (LRT) or estimated (EM)
SNRs through the cumulants in (35). Therefore, it must be
computed each time these values change. As it was mentioned
above, the distributions of the GLRT and EGC test statistic,
under the null hypothesis, only depend on J and M, which are
known parameters. Therefore, the thresholds can be calculated
and set in advance, regardless of the values of the SNRs at

each time.
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VI. SIMULATION RESULTS
A. Experimental Setup

We have considered the following assumptions:

o The CRs measure the signal energy periodically, being
T the time elapsed between consecutive measurements.
After each measurement, the CRs report the energy
values to the FC through the control channels, which
are assumed to be error-free. We also assume that the
PU state does not change during the sampling intervals
when the CRs acquire the M signal samples to estimate
the energy level. But it can change between consecutive
energy measurements.

o The PU activity, s,, is modeled as a homogeneous
Markov chain with two states: inactive (s = 0) and active
(s = 1). This model has been widely used in the technical
literature [39], [40]. According to [40], we assume that
the transition probabilities are P(s, = 0|s,—1 = 0) =
1—a,P(sp = 1lsn—1 = 1) = a3, where a; is the
COR. The PU activity model is unknown by the FC, but
we assume that it knows the COR.

o We assume that the sensing channels are independent and
identically Rayleigh distributed. Therefore, the SNRs at
the CRs will be independent and exponentially distrib-
uted, with identical mean E[g;] = g, j = 1,...,J.
The sensing channels (and therefore the SNRs) are time-
varying. The time correlation between the energy mea-
surements is determined by the channels Doppler shift
normalized to 1/7, which is denoted by fp. We assume
that fp is the same for all sensing channels. In the sim-
ulations, we generate time-correlated realizations using
the Jakes’ model [41] with the corresponding fp. It is
important to remark that the above channel model is just
the one we adopt in the simulations by default. Any
other model, with a different distribution, could be used,
as these distributions are not used in the derivation of the
proposed approach.

Unless otherwise indicated we consider the following values
for the model parameters: J = 3, M = 32, oy = 0.5,
g=—3dBand fp = 2-1073. They can be realistic values in
practical mobile scenarios. The following results show how
the detection and estimation performance depends on such
parameters.

B. Performance of the EM Estimator

We first study how the estimation performance of the EM
algorithm evolves, in stationary and in time-varying scenarios,
by means of Monte Carlo simulations. We average the perfor-
mance of R = 10° independent runs, each one comprising
N = 200 energy vectors. Each sequence of energy vectors
was obtained from realizations, of length N, of the random
processes g, and s,, according to the models described above.
We consider the mean squared error (MSE) at each time n as
a performance metric:

R
1
MSE, = — > 1&g — g{||?
d RJ T:1||gn gn || ?

2527
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Fig. 1. MSE of the SNR estimates for different values of learning rate in
invariant channels (fp = 0).
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Fig. 2. MSE of the SNR estimates for different values of learning rate in

time-variant channels with fp = 2-1073.

where the superscript r denotes the index of each independent
run.

Figure 1 shows the MSE curves, for different values of
the learning rate, in the stationary case (fp = 0). Therefore,
in each run the SNR at each CR is constant, so all energy
values are measured with the same SNR. The figure shows that
the lower the learning rate the better the MSE. This behavior
is explained by the fact that the contribution of the energy
observations should not depend on the time the energies were
measured. According to (27), this occurs when the forgetting
factor tends to zero.

Figure 2 shows the MSE curves when the SNRs are
time-varying with fp = 2 - 1073, For illustration purposes,
Figure 3 shows the SNRs realization and the corresponding
estimates in one of the R runs. Due to the time correlation,
the optimal forgetting factor is no longer zero. The more
recent an energy observation is, the more weight it should have
in estimating the current SNR (see (25)). These weights are
controlled by the forgetting factor, being p ~ 0.1 the optimal
in this case.

To explain the transient MSE for small values of the
forgetting factor, as = 0.05, we have to resort to (25) and
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Fig. 4. MSE versus forgetting factor for different values of Doppler shift.

its asymptotic (27). When g is small, the first estimates of the
SNR (for small n) are very similar (see (25)) and close to (27).
The value of fp determines how many consecutive energy
vectors are measured under similar SNRs. Let us denote it as
Np. Then, when n < Np the energy measurements up to n
have been measured under similar SNRs values. In this case,
small values of p are optimal, as Figure 2 shows. But, when
n > Np the last energy vectors are measured under different
SNRs values, so small values of p are no longer optimal.

In the following figures we show the performance of the
EM estimator in the stationary regime, that is, when n is large
enough so the MSE does not depend on it. In this case, taking
advantage of the ergodicity of g,, and s,,, we consider a single
but very long run, N = 2 - 107, to estimate the MSE. Now,
it will be

1 N
MSE = — An_ n 2-
NJ;IIg, gnll

Figure 4 shows the MSE versus the forgetting factor for
different values of normalized Doppler shift. As it is expected,
the higher the correlation of the SNR values (lower fp),
the lower is the optimal forgetting factor. Interestingly, the
optimal forgetting factor is similar (around p = 0.1) in the
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Fig. 6. MSE versus forgetting factor for different values of M.

three curves even though the time correlation of the SNRs is
quite different.

Figure 5 shows the MSE versus the forgetting factor for
different values of COR. As it is expected, performance
degrades when «; decreases. This is because the less active
is the PU, the fewer energy values are available to estimate
the primary SNR. It is also observed that the less active is
the PU, the higher is the optimal forgetting factor because the
energy measurements with primary signals are more sparse in
time. In any case, despite this trend, one can observe that the
optimal forgetting factor is quite similar (around g = 0.1) in
all cases.

Figure 6 shows the MSE versus the forgetting factor for
different numbers of signal samples, M, used to estimate the
energy. The higher the M, the more accurate are the energy
estimates, and therefore, the better is the MSE. It is also
observed that the optimal forgetting factor depends little on
M. Tt is around ¢ = 0.1 in all cases.

Figure 7 shows the MSE versus the forgetting factor for
different number of CRs. The optimum forgetting factor does
not depend on the number of CRs. Performance improves
slightly as the number of CRs increases. This improvement
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Fig. 8. NRMSE versus forgetting factor for different values of average SNR.

comes from the E-step (21) because the responsibilities are
computed more accurately from more energy measurements.
On the other hand, in the M-step (22) there is no benefit from
using more CRs. This is because the energy measurements at
different CRs are almost independent, so the SNR at a given
CR is estimated only from its local energy level.

Figure 8 shows the estimation performance, as a function of
the forgetting factor, for different values of average SNR. To
compare performance curves with different average SNR we
employ the normalized root MSE (NRMSE) as a performance
metric, defined as

NRMSE = (36)

1] 1 K ,
T\ 7 e el

As it is expected, the higher the average SNR, the better the
performance. The optimal forgetting factor does not change
significantly with the average SNR.

Figures 4 to 8 show that © = 0.1 is a good choice in
all cases. It is close to the optimum for a wide range of the
parameters’ values.
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Fig. 10. Transient behavior of the false alarm probabilities.

C. Performance of the EM Detector

In this section, we compare the detection performance of the
EM detector with the LRT, the one-shot GLRT, and the EGC
detectors. For the LRT the SNRs are assumed to be known,
so its performance can be considered as an upper bound for the
others. The performance metric is the probability of detection,
Pp, for a given probability of false alarm, P 4.

First, we study the transient behavior of the EM detector,
in time-varying scenarios, by means of Monte Carlo simula-
tions. We average the performance of R = 10° independent
runs, each one comprising N = 60 energy vectors. Unless
otherwise indicated, the values of the simulation parameters
are the ones mentioned in Section VI-A.

Figure 9 shows the detection probability for two values of
prescribed probability of false alarm: P}, = {0.1,0.01}. The
forgetting factor is = 0.1. It is observed that after n = 20
energy observations the detection probabilities reach stationary
values. It agrees with the transient estimation behavior shown
in Figure 2.

Figure 10 depicts the corresponding curves of probability
of false alarm. They show that the moment-matching approx-
imation (35) to set the decision threshold is very good. It is

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on April 11,2022 at 09:33:03 UTC from IEEE Xplore. Restrictions apply.



2530

--EM, fp=3-1073 ||
-B-EM, fp =2-1073 []
VW[ E— N pr— -0-EM, fp=1-10"3 ||

0.15 0.2 025 03 0.35
7

Fig. 11. Detection probability versus forgetting factor for different values of
Doppler shift.

0.82 T T T T T T

0.81

078 W eireessensrnanene| == EM, ;= 0.25
| -E-EM, a1 = 05
(U] - S —— i — cied =©=EM, a7 =0.75 ]
| | | T T T
0.05 0.1 0.15 0.2 025 03 0.35
m

Fig. 12. Detection probability versus forgetting factor for different values of
COR.

observed that, once the SNRs have been properly estimated,
the EM detector threshold is precisely set.

Figures 9 and 10 show an undesirable transient behavior
in the first iterations due to the fact that the number of past
energy observations is insufficient for a precise estimation of
the SNRs (see Figure 2). A simple way to overcome this is to
use the GLRT (12) in the early iterations and switch to the EM
detector after the number of energy observations is enough for
an acceptable SNRs estimation. The figures show that, after
a few energy observations, the EM detector outperforms the
GLRT, and the decision threshold for the prescribed P 4 is
accurately obtained.

In the following figures we show the performance of the
EM detector in the stationary regime, that is, when the
number of past energy observations is enough so the detection
performance does not depend on it. Again, taking advantage
of the ergodicity of the models of g,, and s,, we consider a
single but very long run of N = 2-10° energy observations
to estimate the stationary detection performance. Unless oth-
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Fig. 14. Detection probability versus average SNR for different number of
CRs.

erwise indicated the prescribed probability of false alarm is
Pr., =0.01.

Figure 11 shows the probability of detection versus p for
different Doppler shifts. As it is expected, the optimal forget-
ting factor increases slightly when the Doppler shift increases
because the energy measurements exhibit less correlation.
In any case, it is quite close to ¢ = 0.1 for a wide range
of fp values. Moreover, in all cases, the EM algorithm shows
good detection performance even for ;1 values much bigger
than the optimal one.

Figure 12 shows the detection probability for different
values of COR. As it is expected, the detection performance is
better for higher values of COR because more energy vectors
are observed when the PU is active. As in the previous figure,
the optimal g is close to 0.1 in all cases.

Figure 13 shows the detection probability for different
values of M. The probability of detection is quite sensitive to
M. A small increment in M leads to significant performance
improvement. As in previous figures, the optimal forgetting
factor is close to p = 0.1, and the performance does not
degrade significantly for large deviations from it.

Figure 14 shows how the inherent diversity of the cooper-
ative spectrum sensing improves detection performance. It is
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Fig. 15. Detection probability and NRMSE of the EM estimator versus

average SNR.

observed that the detection probability is very sensitive to the
number of CRs. The forgetting factor was p = 0.1 in all cases.

Finally, Figure 15 shows the detection probability as a
function of the average SNR together with the NRMSE of the
EM estimates. The forgetting factor was p = 0.1 in all cases.
As expected, the better the estimation performance, the closer
the EM detector is to the LRT. In any case, the estimation
performance of the EM algorithm is good enough that the
probability of detection hardly deviates from that of the LRT
over the entire SNR range.

VII. CONCLUSION

We have presented a new adaptive algorithm for cooper-
ative spectrum sensing based on the soft fusion of energy
measurements of the sensors. The algorithm jointly detects
the channel occupancy and estimates the SNR at the energy
sensors. We also propose an accurate method to calculate the
detection threshold. Due to its adaptive nature, the algorithm
is well suited for mobile scenarios where the SNR at the
sensors change over time. Numerical simulations show that
the algorithm can efficiently track the SNRs, so its detection
performance is close to the likelihood ratio test in realistic
conditions.

APPENDIX A
ML ESTIMATION OF THE SNR
The ML estimate of g;, from e;, under H; is
g; = argmax f(ejls =1,9;)
9520

Considering (5) and taking logarithms,

€j
37
= (37)

g; = argmin M log(1 + g;) +
9520

This is a single-variable optimization problem with an
inequality constraint. The Karush-Kuhn-Tucker (KKT) con-
ditions are

M(+gj)—ej—A1+g)*>=0, Agj=0, \>0,

where )\ is the Lagrange multiplier.

2531

o If the constraint were inactive, g; > 0 = X\ = 0 Then,
the KKT conditions reduce to

M(1+g;) —e; =0, g; >0

From the equality, we obtain g; = % — 1, and the
inequality requires e; > M.
o If the constraint were active, g; = 0. Then, the KKT
conditions reduce to
M—e;j—A=0, A>0.

From the equality, we have A\ =
inequality requires e; < M

M — ej;, and the

The results from the two cases can be compactly written as

. €; +
we (o)
APPENDIX B

DERIVATION OF THE ONE-SHOT GLRT

From (11), there are two possible cases,

o ife; <M = g; = 0, then, the jth term in the GLR (10)
will be ¢; 1% = 0.
e ife; > M = g; = e;/M — 1, then, the jth term in the

GLR (10) will be

i /M —1 - M
€4 ng Zejej/ Zeje] =€j M
1+g; Cj/M e;j

Finally, the above expressions can be written compactly
as follows

e; ng = (ej — M)t (38)

1+g;
APPENDIX C

COMPLETE-DATA LIKELIHOOD IN EXPONENTIAL
FAMILY FORM

Given e and s, the complete-data likelihood can be written
as follows

Le(g) = lao flels = 0)]'" " [a1 fle|s = 1,g)]"

Considering (5) and (6), it becomes

S
M-1
J

J
Lete) = oo Stels =0~ |on Tl 557

S

&)

[0+ 0 esp (52)

=1 9
J M1 °
_ _ oyl j
= [ao f(e]s = 0)] ai H X0
j=1

J .

exp —sZMlog(l—f—gj)—i— J
= 1 +g;
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Then, denoting

he,s) = [ao flels = 0)]

mH !

MZ log(1 + g;) S
1 er S
n(g) = (o B =] |
(1_‘_:qJ)—1 €JS
(39)

the complete-data likelihood can be written in exponential
family form, i.e.,

Le(g) = h(e,s) exp [n(g)" ®(e,s)] .

APPENDIX D
E-STEP: CONDITIONAL EXPECTATION OF
THE SUFFICIENT STATISTIC

Considering (17), the conditional expectation of the

sufficient statistic at time n will be

. - 1
Bl (ensu)lens il = 5 ).
n

where the responsibility is given by
5p = E[splen, 8n-1] = P(sn = 1len, 8n-1),
which is the probability that the PU was active when e,, was

observed, conditioned on the previous SNR estimate g,,_1.
Applying the Bayes’ theorem, it becomes

5 — f(enlsn = Lgn—l) f(Sn - 1)
" flen|gn-1)
aq f(en|sn = 1|gn71)
Qg f(en|5n = O) + o f(enlsn = 1agn—1)
- &%) f(en|sn = 0) -t
N |:1+ aq f(en|5n:1;gn—1):| .

Considering the conditional pdf of the energy vectors, given
by (6) and (5), the responsibility can be written as

—1

J ~
. « ) n i Gl
Sn= | 1F a_O I I (14 Gn-1,,)™ exp (—7%] In 1’j>
17
J=1

L+ Ggn-1,
Then, (19) can be expressed as follows

(ﬁn:[bnaz]T

)

where

bp =0 —p) bpo1 4+ 1 S0, an=(1—p) an_1+ 4 3, €y,.
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APPENDIX E
M-STEP: ESTIMATION OF THE INSTANTANEOUS
PRIMARY SNR

The estimate of the SNR vector at time n is given by (15).
Then, considering the parameters function in (17), the M-step
becomes

J J
g, = argmax — b, ZMlogl—i—g]) Zla%
g>0 = = 9j
J .
= argmin b, Mlog(1 + g;) + —=L—.

Since the terms of the objective function are decoupled,
the optimization problem can be divided into .J decoupled
constrained optimization problems of the form

Gn,j

0n.; = argmin Mb,, log(1 + ¢g;) + ——.
n.j g g(1+g;) T+,

9520

Notice that it has the same form than (37) changing Mb,,
and a,; by M and e;. Therefore, the instantaneous SNRs

estimates will be
o — an,j -1 -
Ind =\ M b, '
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