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Abstract—This paper considers passive detection of a cyclo-
stationary signal in two multiple-input multiple-output (MIMO)
channels. The passive detection system consists of an illuminator of
opportunity (IO), a reference array, and a surveillance array, each
equipped with multiple antennas. As common transmission signals
of the IO are cyclostationary, our goal is to detect the presence of
cyclostationarity at the surveillance array, given observations from
both channels. To this end, we analyze the existence of optimal
invariant tests, and we derive an alternative and more insightful
expression for a previously proposed generalized likelihood ratio
test (GLRT). Since we show that neither the uniformly most power-
ful invariant test (UMPIT) nor the locally most powerful invariant
test (LMPIT) exist, we propose an LMPIT-inspired detector that is
given by a function of the cyclic cross-power spectral density. We
show that the LMPIT-inspired detector outperforms the GLRT,
and both detectors outperform state-of-the-art techniques.

Index Terms—Cyclostationarity, generalized likelihood ratio
test (GLRT), locally most powerful invariant test (LMPIT),
multiple-input multiple-output (MIMO) passive detection.

I. INTRODUCTION

IN THIS work, we consider a multiple-input multiple-output
(MIMO) passive bistatic radar system. Such systems are

of special interest as they are simple, cheap, and undetectable
because the transmitter is not part of the system [1]. A passive
bistatic radar system consists of one receiver and one non-
cooperative transmitter, which is referred to as an illuminator of
opportunity (IO). The passive radar receives a direct-path signal,
which is a noisy version of the transmitted signals from the IO,
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and a target-path signal, which is the echo from the target if it
is present, or only noise, otherwise. In order to separate these
two signals at the receiver, either directional antennas [2], digital
beamforming [3], [4] or both could be employed. The target-path
signal may also be corrupted with direct-path and clutter compo-
nents. Given a strong direct-path signal in the reference channel,
techniques to cancel these kinds of interferences are presented
in, e.g., [5], [6]. Typically, the IO is a commercial radio or TV
broadcast system, or it could be a space-based source such as
communication or navigation satellites [7]–[9].

Various techniques have been derived to detect the presence
of the target echo at the surveillance channel (SC) assuming
that the transmission signal is temporally white. The most com-
mon approach is based on cross-correlating the signals at SC
and reference channel (RC), e.g., [5], [10]–[14]. Although this
resembles the matched filter, it is suboptimal due to noise at the
RC [14]. In [15]–[18] generalized likelihood ratio tests (GLRT)
were derived for the case of unknown stochastic waveforms
and for various assumptions on the signal and noise models.
Reference [15] considered the detection of a rank-one signal
received by a multiantenna array, whereas [16] generalized these
results to a rank-p signal. These detectors assume that the noise
has an arbitrary spatial correlation. The GLRT for spatially white
noise with the same variance at SC and RC was derived in [17].
Finally, [18] extended the results to the detection of a rank-p
signal in white noise with different variances at SC and RC
and spatially uncorrelated noise with arbitrary variances. The
GLRTs for the case of unknown deterministic waveforms in
temporally and spatially white noise were presented in [19]
and [20], where [19] assumed unknown and [20] assumed known
noise variance. For the same problem, an approximate Bayesian
test was derived in [19] and the exact Bayesian test was presented
in [21]. The work in [22] proposed an ad-hoc detector based on
the generalized coherence [23].

However, all these aforementioned detectors do not exploit the
fact that digital communication signals transmitted by potential
IOs are cyclostationary [24]. For single array detection this prop-
erty was exploited in [25], [26], which derived locally optimum
tests for a known signal waveform and different assumptions on
the noise. In [25] temporally and spatially white Gaussian noise
was considered, whereas [26] considered non-Gaussian noise.
The GLRT and locally most powerful invariant test (LMPIT) for
detecting an unknown cyclostationary signal with a single array
in temporally and spatially correlated noise was derived in [27]
and specialized to various noise structures in [28], [29].
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A. Contributions

In this work, we solve the two-channel passive detection
problem by exploiting cyclostationarity. This aims at detecting
the presence of cyclostationarity at the SC given the additional
reference channel. We evaluate the performance of the pro-
posed detectors with Monte Carlo simulations and show that
they outperform existing tests. The main contributions can be
summarized as follows:

1) We derive an alternative and more insightful expression for
the GLRT, which we have previously proposed in [30].
Deriving the GLRT requires the maximum likelihood
(ML) estimates of the covariance matrices, which have a
block-Toeplitz structure. Since there exists no closed-form
solution for (block) Toeplitz covariance matrices, we use
an asymptotic result from [27], which allows us to obtain
approximate closed-form ML estimates of the covariance
matrices under both hypotheses. Moreover, we show that
the distribution under the null hypothesis can be asymp-
totically approximated by the distribution of the product
of independent beta random variables.

2) We examine the existence of the uniformly most powerful
invariant test (UMPIT) and the LMPIT. In order to do
so, we exploit Wijsman’s theorem [31], which avoids the
necessity of deriving the maximal invariant statistic and
its distribution under both hypotheses. This approach has
already been applied in, e.g., [27], [29]. We show that nei-
ther UMPIT nor the LMPIT exist. However, based on these
derivations we are able to propose an LMPIT-inspired
detector.

3) We provide an interpretation of the two proposed test
statistics. The generalized likelihood ratio (GLR) is a func-
tion of a coherence matrix (that accounts for the spectral
correlation at the SC) and a function of the cross-coherence
matrix (that accounts for the cross-spectral correlation be-
tween the SC and the RC). Our proposed LMPIT-inspired
detector only depends on the latter.

B. Outline

The detection problem is formulated in Section II followed
by the derivation of the GLRT in Section III. In Section IV we
examine the existence of the LMPIT, and in Section V we pro-
vide an interpretation of the statistics. In Section VI we propose
the LMPIT-inspired detector. Finally, the performance of the
GLRT and the LMPIT-inspired tests is numerically evaluated
with Monte Carlo simulations in Section VII.

C. Notation

In this paper A ∈ CM×N denotes a complex-valued matrix
of dimension M ×N , u ∈ CM denotes a complex-valued vec-
tor of dimension M , and (·)T and (·)H denote the transpose
and Hermitian transpose, respectively. Light-face lower case
letters indicate scalars. Furthermore, the trace, determinant, and
Frobenius norm of a matrix are denoted by tr(·), det(·), and
|| · ||2, respectively. The operator vec(A) takes the column-wise
vectorization of matrix A and diagM (A) is the block-diagonal
matrix with block size M obtained from the M ×M main

diagonal blocks ofA. The square root matrix is denoted byA1/2

and the identity matrix of dimension N ×N by IN . The set of
block-diagonal Hermitian matrices of size N ×N with block
size M ×M is written as SN

M and similarly the set of Hermitian
block-Toeplitz matrices of size N ×N with block size M ×M
as TN

M . The subscript k in Bk denotes the kth block on the
main diagonal of B of the appropriate dimensions. Moreover,
the superscripts (i, j) indicate the (i, j)th possibly matrix-valued
element in Bk. The corresponding dimensions are given in
the context. We denote the Kronecker product of two matrices
by ⊗, ∗ denotes the convolution, and ∝ indicates equality up
to data-independent positive multiplicative and additive terms.
Finally, x ∼ CN (μ,R) stands for a proper complex Gaussian-
distributed vector x with mean μ and covariance matrix R.

II. PROBLEM FORMULATION

We consider a passive bistatic radar setup, in which there
are an RC and an SC. Without loss of generality, we assume
that each array is equipped with L antennas.1 Furthermore,
we assume that the IO is equipped with LI antennas, and a
noisy version of its transmitted signal is received at the RC.
The cancellation of interference and clutter in the RC has been
considered in e.g. [32], [12]. If there is a target present, the echo
of the transmitted signal is observed at the SC. If there is no target
present, only noise is received at the surveillance array. Hence,
we assume that there is no clutter, interference, or direct-path
signal present in the SC, which is achieved by either physical
shielding [33] or cancellation by signal processing techniques
presented in e.g. [4]–[6], [34]. The complete cancellation of
direct-path interference in the SC is, admittedly, an idealized
assumption as was pointed out in [4] and the works in [14],
[35], [36] have considered the direct-path interference in their
signal models. Furthermore, we restrict our attention to the
true velocity of the target corresponding to a Doppler shift,
which allows us to assume that the target echo observed at
the SC is synchronized to the reference signal [18], [20], [36].
The time-delay of the target echo is inherently accounted for
in the frequency-selective channel, which we assume in our
signal model in the following paragraph. Moreover, considering
that direct-path interference has zero Doppler-shift as opposed
to the target path signal, it can be filtered [37]. Thus, taking
into account the aforementioned assumptions, the passive radar
system considered in this paper is illustrated in Fig. 1 and the
detection problem can be formulated as

H0 :

{
us[n] = vs[n],

ur[n] = Hr[n] ∗ s[n] + vr[n],

H1 :

{
us[n] = Hs[n] ∗ s[n] + vs[n],

ur[n] = Hr[n] ∗ s[n] + vr[n],
(1)

for n = 0, . . . , NP − 1 and where Hs[n] ∈ CL×LI and
Hr[n] ∈ CL×LI represent the time-invariant frequency-
selective channels from the IO to the reference and surveillance

1Note that the derivations can easily be generalized to different numbers of
antennas at both arrays.
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Fig. 1. MIMO passive bistatic radar system that consists of an IO, a reference,
and a surveillance array. The reference array receives the direct-path signal from
the IO illustrated by the black dashed line and in the presence of a moving target
the surveillance array receives the target-path signal, which is depicted by the
gray dashed dotted line.

arrays, respectively. The additive noise terms vs[n] ∈ CL and
vr[n] ∈ CL are assumed to be wide-sense stationary (WSS)
with arbitrary temporal and spatial correlation, but they are as-
sumed to be uncorrelated between reference and surveillance ar-
rays. The signal s[n] ∈ CLI transmitted by the IO is assumed to
be a discrete-time zero-mean second-order cyclostationary (CS)
signal with cycle period P , i.e., its matrix-valued covariance
sequence Rss[n,m] = E[s[n]sH [n−m]] = Rss[n+ P,m] is
periodic in n with period P . Since the transmitted signal s[n]
is CS, the signal ur[n] ∈ CL received at the reference array
is a multivariate CS process with cycle period P under both
hypotheses, whereas the signal us[n] ∈ CL received at the
surveillance array is WSS under H0 and CS with cycle period
P under H1. As the cycle period is related to signal features
such as carrier frequency, symbol rate, or, for instance, cyclic
prefix length, which are known by the standards used by the
IO, we can assume that the cycle period P is known a priori.
If this is not the case, the cycle period may be estimated with
techniques presented in, e.g., [38]–[40]. Moreover, we assume
thatLI ≥ L, which implies that the cyclic (cross) power spectral
densities (PSD) of Hs[n] ∗ s[n] and Hr[n] ∗ s[n] have full rank
L. We make this assumption because the low-rank case would
impose additional structure that is not considered in this work.

In order to formulate the hypothesis test, let us consider the
vector-valued process

x[n] =
[
uT [nP ] · · · uT [(n+ 1)P − 1]

]T ∈ CLP , (2)

which is WSS if the L-variate process u[n] ∈ CL is CS with
cycle period P [41]. This implies that its matrix-valued co-
variance function Rxx[n,m] = E[x[n]xH [n−m]] = Rxx[m]
only depends on the time-shift. Moreover, the stack of N ob-
servations w = [xT [0] · · · xT [N − 1]]T ∈ CLNP has a block-
Toeplitz structured covariance matrix with block size LP :

Rww = E[wwH ]

=

⎡
⎢⎢⎣

Rxx[0] · · · Rxx[N − 1]

...
. . .

...

RH
xx[N − 1] · · · Rxx[0]

⎤
⎥⎥⎦ ∈ TLNP

LP . (3)

Exploiting the latter considerations we observe that the stack
of NP samples of ur[n]

wr =
[
uT
r [0] · · · uT

r [NP − 1]
]T ∈ CLNP , (4)

has covariance matrix Rr = E[wrw
H
r ], which is a block-

Toeplitz matrix with block size LP under both hypotheses since
the signal ur[n] is CS with cycle period P regardless of the
hypothesis. On the other hand, the stack of observations ofus[n]

ws =
[
uT
s [0] · · · uT

s [NP − 1]
]T ∈ CLNP , (5)

has a block-Toeplitz structured covariance matrix R
(0)
s =

E[wsw
H
s |H0] with block size L under the null hypothesis,

where us[n] ∈ CL is WSS, and covariance matrix R
(1)
s =

E[wsw
H
s |H1], which is block-Toeplitz with block size LP

under the alternative, where us[n] is CS with cycle period P .
Moreover, we stack the observations from SC and RC into one
long vector

w =
[
wT

s wT
r

]T ∈ C2LNP . (6)

Now let us investigate the structure of the covariance matrix of
w under both hypotheses. Since the vectors ws and wr are un-
correlated under the null hypothesis, the covariance matrix will
simply be a 2× 2 block-diagonal matrix wherein the covariance
matrices of ws and wr are the first and second blocks on the
main diagonal, respectively,

R0 = E[wwH |H0] =

[
R

(0)
s 0

0 Rr

]
. (7)

The covariance matrix of w under the alternative becomes more
involved as ws and wr are correlated:

R1 = E[wwH |H1] =

[
R

(1)
s Rsr

Rrs Rr

]
, (8)

whereRsr = RH
rs = E[wsw

H
r |H1] is the cross-covariance ma-

trix of ws and wr, which is a block-Toeplitz matrix with block
size LP since the matrix-valued cross-covariance sequence of
us[n] and ur[n] is also periodic with period P . Thus, all of the
matrices R

(1)
s , Rr, and Rsr are block-Toeplitz matrices with

block size LP . Assuming that us[n] and ur[n] are zero-mean
proper complex Gaussian random processes, we can formulate
the hypothesis test as

H0 : w ∼ CN 2LNP (0,R0),

H1 : w ∼ CN 2LNP (0,R1). (9)

As R0 and R1 are unknown, (9) is a composite hypothesis
test, which is typically approached by a GLRT, a UMPIT, or an
LMPIT. The block-Toeplitz structure of the covariance matrices
precludes the derivation of the aforementioned detectors. This
is because there is no closed-form for the ML estimate of
block-Toeplitz covariance matrices and they do not have the
necessary invariances for the existence of the UMPIT or the
LMPIT. To overcome this issue, we follow an approach similar
to [27], where it is shown that we can asymptotically (N → ∞)
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approximate a block-Toeplitz covariance matrix by a block-
circulant matrix and the likelihood with the block-circulant
matrix converges to that with the block-Toeplitz matrix.

Before proceeding we should note that a (block) circulant
matrix can be diagonalized by the DFT. To this end let us
consider the following linear transformation of w♣,

z♣ = (LNP,N ⊗ IL)(FNP ⊗ IL)
Hw♣, (10)

where ♣ ∈ {s, r}, LNP,N is the commutation matrix,2 and FNP

is the DFT matrix of size NP . Hence, z♣ contains a specific
reordering of the frequencies in w♣. In order to give an insight
into the reordering let us first partition zs into N blocks x[n] ∈
CLP and zr into N blocks y[n] ∈ CLP for n = 0, . . . , N − 1.
Furthermore, the DFT of length NP of u♣[n] is defined as

u♣(θk) =

NP−1∑
n=0

u♣[n]e
−jθkn, (11)

with θk = 2π
NP k. Then the nth block of size LP of zs is given

by

x[n] =
[
uT
s (θn) u

T
s (θN+n) · · · uT

s (θ(P−1)N+n)
]T

(12)

and similarly for zr:

y[n] =
[
uT
r (θn) u

T
r (θN+n) · · · uT

r (θ(P−1)N+n)
]T

. (13)

Hence, each of the blocks x[n] and y[n] contains P frequencies
separated by multiples of the fundamental cycle frequency 2π

P .
Recall that frequency components of a CS process separated by
multiples of a cycle frequency may be correlated [42].

Let us now investigate the (cross) covariance matrices of zs
and zr. Under the null hypothesis we obtain

S0 = E[zzH |H0] =

[
S
(0)
s 0

0 Sr

]
, (14)

where the off-diagonal blocks are zero since observations at SC
and RC are uncorrelated, and the covariance matrices S

(0)
s =

E[zsz
H
s |H0] ∈ SLNP

L and Sr = E[zrz
H
r ] ∈ SLNP

LP are block-
diagonal matrices with block size L and LP , respectively, since
the covariance matrices of ws and wr are asymptotically block-
circulant and diagonalized by the linear transformation in (10).
Note that Sr is block-diagonal with block size LP regardless of
the hypothesis. Under H1, the covariance matrix is given by

S1 = E[zzH |H1] =

[
S
(1)
s Ssr

Srs Sr

]
, (15)

where S
(1)
s = E[zsz

H
s |H1] and Ssr = SH

rs = E[zsz
H
r |H1] are

block-diagonal with block size LP . Hence, each of the four
blocks in S1 is now given by a block-diagonal matrix with block
size LP . Finally, the hypotheses can be formulated as

H0 : z ∼ CN 2LNP (0,S0),

H1 : z ∼ CN 2LNP (0,S1). (16)

2The commutation matrix fulfills the following equation: vec(A) =
LMN,N vec(AT ) for an M ×N matrix A.

III. DERIVATION OF THE GLRT

The GLR is given by

G =
p(z0, . . . , zM−1; Ŝ0)

p(z0, . . . , zM−1; Ŝ1)
, (17)

where z0, . . . , zM−1 denote M independent and identically
distributed (i.i.d.) realizations3 of z and Ŝ0 and Ŝ1 denote the
ML estimates of S0 and S1, respectively. Under the Gaussian
assumption the likelihoods are given by

p(z0, . . . , zM−1; Ŝj) =
1

π2LNPM det
(
Ŝj

)M

× exp
{
−M tr

(
QŜ−1

j

)}
, (18)

whereQ = 1
M

∑M−1
m=0 zmzHm =

[
Qs Qsr

Qrs Qr

]
is the sample co-

variance matrix of z and j ∈ {0, 1} indicates whether it is the
ML estimate under H0 or H1.

In the following we will derive the GLRT, which requires the
ML estimation of the covariance matrices under both hypothe-
ses. Although this is straightforward under the null hypothesis
as it requires the ML estimation of a block-diagonal matrix,
it demands a suitable permutation under H1 to obtain another
block-diagonal covariance matrix that is easy to estimate.

Theorem 1: The GLR (17) is given by

G
1
M =

N∏
k=1

det
(
Dk −CkC

H
k

)
, (19)

where Dk is the kth LP × LP block of

D = diagL (Qs)
−1/2 diagLP (Qs) diagL (Qs)

−1/2 , (20)

and Ck the kth LP × LP block of

C = diagL (Qs)
−1/2 diagLP (Qsr) diagLP (Qr)

−1/2 . (21)

Proof: See Appendix A. �
As can be observed, the GLR consists of two parts. The

first one is the coherence matrix D, which accounts for the
spectral correlation present at the SC. The second part is the
cross-coherence matrix C, which captures the cross-correlation
between SC and RC, i.e., it accounts for the inherent cross-
correlation and also for cross-spectral correlation induced by
the presence of cyclostationarity.

Note that there are also the Rao and Wald tests, which could
be applied to our problem. Asymptotically, these tests have the
same performance as the GLRT [43] but in the finite sample case
their performance depends on the specific underlying model as
was pointed out for a different problem in, e.g., [44], [45].

A. Threshold Selection and Null Distribution

In order to apply the proposed detector, it is necessary to
determine a threshold that assures a given probability of false

3In practice i.i.d. observations are rarely available. This may be addressed by
dividing a long observation into M windows and treating them as if they were
i.i.d.
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alarm. To this end we propose two alternatives. The first one
considers the invariances of the tests. We observe that zs can
be multiplied by any non-singular block-diagonal matrix with
block sizeL and zr with any non-singular block-diagonal matrix
with block sizeLP without changing the structure ofS0 andS1,
i.e., the test is invariant to the noise PSD in the SC and signal-
plus-noise PSD in the RC. In the time-domain this corresponds
to a circular convolution of us[n] with an arbitrary L-variate
sequence and a circular convolution of the stack of P obser-
vations of ur[n] with an arbitrary LP -variate sequence, which
is asymptotically equivalent to (MIMO) linear filtering. These
invariances allow us to assume, without loss of generality, that
under H0 z

N→∞∼ CN (0, I2LPN ). Hence, numerical simulations
with a temporally and spatially white process can be used to
obtain the threshold under the null hypothesis for any arbitrary
process.

The second approach decomposes the GLR, similar to [46],
such that its distribution is asymptotically equivalent to a product
of independent beta random variables.

Proposition 1: Under the null hypothesis the likelihood ratio
(19) is distributed as

G
1
M

D
=

N∏
n=1

L∏
l=1

Vl0

P−1∏
p=1

UlpVlp, (22)

where Ulp ∼ Beta(αlp, αp) and Vlp ∼ Beta(βlp, β) with

αlp = M − (Lp+ l − 1), (23)

αp = Lp, (24)

βlp = M − (LP + Lp+ l − 1), (25)

β = LP. (26)

Proof: Please refer to Appendix B. �
Since both approaches only hold asymptotically, the finite-

sample size effects will be studied in Section VII.

IV. DERIVATION OF OPTIMAL INVARIANT TESTS

In this section we study the existence of invariant tests. In
particular, we first consider the UMPIT, which is the optimal
detector among those that are invariant. Moreover, we also
consider the LMPIT, which is optimal only for close hypotheses.
In order to derive the UMPIT or the LMPIT there are several
steps that need to be accomplished [47]: (i) determine the group
of invariant transformations, (ii) identify the maximal invariant
statistic, (iii) determine the distribution of the maximal invariant
under both hypotheses, and (iv) obtain the likelihood ratio of the
densities. If this ratio (or a monotone transformation thereof)
does not depend on the unknown parameters, it would yield the
UMPIT. Although there are some scenarios in which the max-
imal invariant statistic and its distributions can be established,
e.g. [44], [48], in general this can be a tedious approach. In order
to avoid these involved tasks, we will make use of Wijsman’s
theorem, which allows us to directly compute the ratio of maxi-
mal invariants [31]. In the derivation, we will show that neither
the UMPIT nor the LMPIT exist for the given hypothesis test.

The first step of this proof is to identify the invariances of the
hypothesis test as they are required in Wijsman’s theorem.

Considering only linear operations, which will maintain
Gaussianity, we may first observe that we can multiply zs by
any non-singular block-diagonal matrix with block size L and
zr with any non-singular block-diagonal matrix with block size
LP without changing the structure of S0 and S1. Secondly,
we can permute the blocks x[n] in zs arbitrarily, provided
that we apply the same permutation to the blocks y[n] in zr.
This corresponds to a reordering of the blocks that contain P
frequencies separated by multiples of 2π

P . Moreover, we may
arbitrarily permute these P frequencies within each block x[n]
and y[n] for every n = 0, . . . , N − 1. Hence, the invariance
group can be formulated as

G = {g : z → g(z) = Ψz} , (27)

where Ψ =

[
PsG 0
0 PrH

]
with

P♣ =

(
N∑

k=1

εkε
T
k ⊗V

(k)
♣ ⊗ IL

)
(U⊗ ILP ), (28)

εk is the kth column of IN ,V(k)
♣ ∈ V denotes aP × P permuta-

tion matrix, and U ∈ U is a permutation matrix of size N ×N .
V and U denote the corresponding sets ofP - andN -dimensional
permutation matrices, respectively. Furthermore, G ∈ G and
H ∈ H, where G is the set of nonsingular block-diagonal ma-
trices with block size L and H denotes the set of nonsingular
block-diagonal matrices with block size LP . In (28), the left
parenthesized expression performs the permutation within the
blocks x[n] or y[n], respectively, and the right parenthesized
expression applies the same permutation to the blocks x[n] and
the blocks y[n].

Now we will use Wijsman’s theorem [31] to obtain the ratio
of the maximal invariant densities under the two hypotheses,
which is given by

L =

∫
G p(g(z);H1)| det(Jg)|dg∫
G p(g(z);H0)| det(Jg)|dg , (29)

where G denotes the group of invariant transformations, which
we identified for the given problem in the previous paragraph,
the transformation g(·) ∈ G, p(z;Hi) is the probability density
function of z under hypothesis Hi, Jg denotes the Jacobian
matrix of the transformation g(·), and finally dg denotes the
invariant group measure, which in our case is the usual Lebesgue
measure.

For the problem considered in this paper, Wijsman’s
theorem states that the ratio of the distributions of
the maximal invariant statistic is given by (30) shown
at the bottom of the next page, where

∑
VN

0 ,VN
1 ,U =∑

V (1)
0

· · ·∑
V (N)

0

∑
V (1)

1
· · ·∑

V (N)
1

∑
U , and dG and dH are

the invariant measures on the sets G and H, respectively.
If the ratio did not depend on unknown parameters, the
UMPIT would exist. However, it will turn out by further
simplifying (30) that the UMPIT does not exist for this
problem.
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Lemma 1: The ratio (30) can be simplified as

L ∝
∑

VN
0 ,VN

1 ,U

∫
G

∫
H
β(G)β(H)e−M [α1(G)+α2(G,H)]dGdH,

(31)
with

β(A) = | det(A)|e−M tr(AAH), (32)

α1(G) =

N∑
k=1

P∑
m,n=1
m �=n

tr
(
Γ
(m,n)
k G

(n,n)
k D

(n,m)
k G

(m,m)H
k

)
,

(33)

Γ = PT
s diagL (Σ1)

− 1
2 Σ1 diagL (Σ1)

− 1
2 Ps, (34)

α2(G,H) =
N∑

k=1

tr
(
ΛkGkCkH

H
k

)
, (35)

Λ = PT
r Σ

− 1
2

2 Σ21 diagL (Σ1)
− 1

2 Pr, (36)

where S−1
1 = Σ =

[
Σ1 Σ12

Σ21 Σ2

]
.

Proof: See Appendix C. �
We should note that both Γ and Λ depend on unknown

parameters in Σ. For this reason we can conclude that the
UMPIT does not exist. However, we may focus on the case
of close hypotheses to examine the existence of an LMPIT. In
our scenario the hypotheses are close if the SNR at the SC is
very low. In this case the cross-correlation between SC and RC
is close to zero, i.e., Ssr ≈ 0, and at the SC the covariance
matrix Ss is close to block-diagonal with block size L. For
this reason it follows that Σ12 ≈ 0, and Σ1 is also close to
block-diagonal with block size L. Therefore, both α1(G) ≈ 0
andα2(G,H) ≈ 0, and we may use a second-order Taylor series
approximation to approximate the exponential in (31) around
α1(G) + α2(G,H) = 0 as

e−M(α1(G)+α2(G,H)) ≈ 1−M(α1(G) + α2(G,H))

+
M2

2

[
α2
1(G) + 2α1(G)α2(G,H) + α2

2(G,H)
]
. (37)

Thus, (31) can be approximated as

L ∝ L1 + L2 + L3 + L4 + L5, (38)

where

L1 = −M
∑

VN
0 ,VN

1 ,U

∫
G
β(G)α1(G)dG

∫
H
β(H)dH, (39)

L2 = −M
∑

VN
0 ,VN

1 ,U

∫
G

∫
H
β(G)β(H)α2(G,H)dGdH,

(40)

L3 =
M2

2

∑
VN

0 ,VN
1 ,U

∫
G
β(G)α2

1(G)dG

∫
H
β(H)dH, (41)

L4 =
M2

2

∑
VN

0 ,VN
1 ,U

∫
G

∫
H
β(G)β(H)

× α1(G)α2(G,H)dGdH, (42)

L5 =
M2

2

∑
VN

0 ,VN
1 ,U

∫
G

∫
H
β(G)β(H)α2

2(G,H)dGdH.

(43)

Lemma 2: The following terms are zero:

L1 = 0, (44)

L2 = 0, (45)

L4 = 0. (46)

Proof: Let us first focus on L1, which is given by

L1 ∝
∑

VN
0 ,VN

1 ,U

∫
G

∫
H
β(G)β(H)

×
N∑

k=1

P∑
m,n=1
m �=n

tr
(
Γ
(m,n)
k G

(n,n)
k D

(n,m)
k G

(m,m)H
k

)
dGdH.

(47)

Applying the change of variables G(n,n)
k → −G

(n,n)
k and it can

be seen that the integrals need to be equal to their opposites, i.e.,
they are zero. In a similar fashion, it can be shown that the terms
L2 and L4 are zero. �

Finally, the quadratic terms in α1(G) and α2(G,H) remain
in (38). In the following theorem we will show that these terms
can be expressed as functions of the (cross) coherence matrices
(20) and (21).

Theorem 2: The ratio of the distribution of the maximal
invariant statistic in (30) is

L ∝ LS + γLSR, (48)

where

LS =

N∑
k=1

||Dk||2 (49)

and

LSR =

N∑
k=1

||Ck||2 (50)

with D and C given by (20) and (21), respectively. The param-
eter γ is a constant that depends on unknown parameters but is
independent of the observations.

Proof: See Appendix D. �

L =

∑
VN

0 ,VN
1 ,U

∫
G

∫
H det(S1)

−M | det(G)|2 M | det(H)|2 M exp
{−M tr

(
ΨQΨHS−1

1

)}
dGdH∑

VN
0 ,VN

1 ,U

∫
G

∫
H det(S0)−M | det(G)|2 M | det(H)|2 M exp

{−M tr
(
ΨQΨHS−1

0

)}
dGdH

(30)
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SinceL still depends on unknown parameters via the constant
γ, we can conclude that the LMPIT does not exist. We should
note that the term LS is the LMPIT for the single array CS de-
tection problem [27]. After giving an interpretation of both LS

and LSR in the following section, we will study the influence
of the two terms on the detection performance as a function of γ
in Section VI, which will finally show that an LMPIT-inspired
detector can be suggested.

V. INTERPRETATION OF THE TEST STATISTICS

As can be seen in (19) and (48), both the GLRT and the
ratio of the distribution of the maximal invariant statistics are
functions of the sample coherence matrix D and the sample
cross-coherence matrix C given in (20) and (21), respectively.
Similarly to [27], we will provide an interpretation of these
statistics. Recall that the cyclic (cross) PSD at cycle frequency
2π
P l is given by [49]

Π
(l)
♣♥ (θ) dθ = E

[
dξ♣ (θ) dξ

H
♥

(
θ − 2π

P
l

)]
, (51)

where ♣,♥ ∈ {s, r} and dξ♣(θ) ∈ CL denotes the increment of
a spectral process ξ♣(θ) that generates the time series

u♣[n] =

∫ π

−π

ejθndξ♣(θ). (52)

Furthermore, the cyclic (cross) PSD and the bi-frequency spec-
trum are related by [49]

S♣♥(θi, θj) =
∑
l

Π
(l)
♣♥ (θj)δ

(
θi − θj − 2π

P
l

)
∈ CL×L.

(53)
Note that the line for l = 0 is the stationary manifold, which
contains the usual PSD. Moreover, the support of S♣♥(θi, θj)
may only contain frequencies separated by multiples of the
fundamental cycle frequency 2π

P , i.e., θi − θj =
2π
P l, for a CS

process with cycle period P . As we have already mentioned in
Section II, these possibly non-zero components are contained in
the LP × LP blocks on the main diagonal of S(1)

s , Sr, and Ssr

in (15). For instance, the (i, j)th L× L sized block of the kth
diagonal block of Ssr is given by

[Ssr]
(i,j)
k = Ssr(θiN+k, θjN+k) = Π(i−j)

sr (θjN+k) ∈ CL×L,
(54)

where θl =
2πl
NP , k = 0, . . . , N − 1, i, j = 0, . . . , P − 1, and

similarly for S
(1)
s and Sr. Accordingly, the ML estimates of

the covariance matrices contain samples of cyclic (cross) PSDs.
Comparing (53) and (54) shows that the L× L diagonal blocks
for i = j correspond to the (cross) PSD on the stationary mani-
fold for frequency θjN+k, and the off-diagonal blocks for i �= j

correspond to the cyclic (cross) PSD at frequency θjN+k and at

cycle frequency 2π(i−j)
P .

The latter considerations allow us to rewrite the (cross) co-
herence matrices D and C as functions of the cyclic (cross)
PSDs.

Proposition 2: The L× L blocks in the (cross) coherence
matrices D and C can be expressed by the samples of the cyclic
(cross) PSDs as

D(q)(θjN+k) =

[
Π(0)

ss

(
θjN+k +

2π

P
q

)]− 1
2

×Π(q)
ss (θjN+k)

[
Π(0)

ss (θjN+k)
]− 1

2

, (55)

and

C(q)(θjN+k) =

[
Π(0)

ss

(
θjN+k +

2π

P
q

)]− 1
2

×
P−1−j∑
m=−j

Π(q−m)
sr

(
θmN+k +

2π

P
j

)[
Π(m)

rr (θjN+k)
]− 1

2

,

(56)

for j = 0, . . . , P − 1, q = −j, . . . , P − 1− j, and k =
0, . . . , N − 1.

Proof: See Appendix E. �
As can be seen, the coherence matrix D contains the cyclic

PSD of the SC signal Π(q)
ss (θjN+k) for q �= 0 normalized by

the PSD, which lives on the stationary manifold. The cross-
coherence matrix C, on the other hand, contains the cross-cylic
PSD between SC and RC, Π(q−m)

sr (θmN+k + 2π
P j), normalized

by Π(m)
rr (θjN+k) and Π(0)

ss (θjN+k + 2π
P q) and sums it over

m = −j, . . ., P − 1− j. Note that the main diagonal blocks
of C given by (57), shown at the bottom of this page, do not
only account for the cyclic components but also for the usual
cross-coherence between the WSS components at frequency
θjN+k given by the first term in the equation.

In a nutshell, the coherence matrixD accounts for the spectral
correlation at the SC, whereas the cross-coherence matrix C
accounts for the cross-spectral correlation between SC and RC.
Furthermore, comparing the GLRT G in (19) and the ratio L
in (48), it can be observed that the GLRT inherently merges
the information provided by the presence of cyclostationarity
at the SC via D and the correlation of SC and RC present in
C, whereas in L these terms are connected by the unknown
parameter γ in (48). Moreover, another difference is the way
the spectral correlation is measured in the two tests. The GLRT
employs the determinant, whereas the ratio of the distribution
of maximal invariants uses the Frobenius norm.

C(0)(θjN+k) =
[
Π(0)

ss (θjN+k)
]− 1

2

Π(0)
sr (θjN+k)

[
Π(0)

rr (θjN+k)
]− 1

2

+
[
Π(0)

ss (θjN+k)
]− 1

2

P−1−j∑
m=−j

Π(−m)
sr

(
θmN+k +

2π

P
j

)[
Π(m)

rr (θjN+k)
]− 1

2

(57)
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Fig. 2. Probability of detection as a function of γ based on different detec-
tion statistics for an experiment with the following parameters: P = 4, N =
128, M = 20, L = LI = 2, a rectangular pulse, SNRs = −18 dB, SNRr =
{−14,−18,−24} dB, and pfa = 0.01.

VI. LMPIT-INSPIRED DETECTOR

Since no LMPIT exists, we now analyze the influence of γ,
i.e., the influence of the individual terms LS and LSR in (48)
on the detection performance. As mentioned before, on the one
hand the term LS is the LMPIT for CS detection at a single
array (the SC). Specifically, it measures the strength of the cyclic
components relative to the stationary components. On the other
hand, LSR measures the strength of cross-spectral correlation
between SC and RC, i.e., it accounts for the inherent correlation
between SC and RC and also for the spectral correlation induced
by cyclostationarity. For this reason it is expected that LSR will
have a bigger influence on the detection performance than LS

provided that the signals are not too weak.
Since the theoretical distribution of (48) is very difficult to

obtain, we used Monte Carlo simulations to study the influence
of γ. In order to do so, we used the signal model to be described
in Section VII to generate realizations under H0 and H1. For a
given set of values for γ we obtained the probability of detection
pd based on the statistic L for a fixed probability of false alarm.
Although we use L throughout this section as a benchmark for
detectors based on the two individual terms LS and LSR, note
that in practice this is not possible as it depends on unknown
parameters in γ. Additionally, we obtained the probability of
detection based on using either LS or LSR individually.

The impact of the parameter γ on detection probability is
shown in Fig. 2. For a fixed SNRs = −18 dB we obtained
the detection probabilities for the detectors based on LS and
LSR for three different values of the SNR at the RC, which are
−14 dB,−18 dB, and−24 dB, and also the detection probability
of LS , which is independent of SNRr. It can be observed that
for this scenario a reasonable performance is only reached for
SNRr = −14 dB. Moreover, the probability of detection based
on LSR almost overlaps with that based on the optimal statistic
L . For lower SNRr the correlation between signals at SC
and RC is getting weaker and the right choice of γ becomes
more critical for the best performance. At SNRr = −24 dB, we

Fig. 3. Probability of detection vs. SNR for various detectors, where SNRs =
SNRr = SNR for an experiment with the following parameters: P = 4, N =
128, M = 20, L = LI = 2, a rectangular pulse, and pfa = 0.01.

observe that a detector based on LS outperforms a detector
based on LSR, i.e., better performance is obtained by simply
detecting the presence of cyclostationarity at the SC. If the
optimal γ were known, the performance of L could be reached.
However, it should be noted that for such a low SNRr even the
optimal detector would not provide satisfactory performance.
As the SNR at the reference array is typically not less than the
SNR at the surveillance array, we compare the probabilities of
detection for equal SNRs at SC and RC for detectors based
on L (where γ has been determined by a brute-force search to
maximize the probability of detection), LSR, and LS in Fig. 3. It
can be observed that although there is a gap between the optimal
pd and the pd of LSR, it is comparatively small and it decreases
as the SNR increases. Moreover, the gap between LSR and LS

decreases with decreasing SNR, which we expect because the
lower the SNR, the more beneficial the CS detection at the SC
only. For different scenarios where we vary, for instance, M
or N , we have also observed (the results are not reproduced
here) that the performance of LSR is close to L with the
optimal γ obtained by brute-force search (which is not possible
in practice).

Based on these considerations we propose

LSR =

N∑
k=1

||Ck||2, (58)

with C defined in (21), as an LMPIT-inspired detector. In the
following section, we will present further numerical results that
show that such an LMPIT-inspired detector outperforms the
state-of-the-art.

In order to determine a threshold that assures a given proba-
bility of false alarm, we utilize again the invariances of the test,
specifically, its asymptotic invariance to linear filtering. Similar
to the GLRT statistic, we assume, without loss of generality,
that under H0 z

N→∞∼ CN (0, I2LPN ). For this reason we can
use numerical simulations with a white process to obtain the
threshold under the null hypothesis for any arbitrary noise.
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Note that the threshold selection is (asymptotically) invariant
to the signal-plus-noise PSD at the RC. In the next section we
investigate the accuracy of the distribution for different sample
sizes.

VII. NUMERICAL RESULTS

In this section we evaluate the performance of the GLRT
and the LMPIT-inspired test using Monte Carlo simulations.4

According to our model in (1) we generate the CS signal s[n]
as a QPSK-signal with either a raised-cosine pulse with roll-off
factor ρ or a rectangular pulse. The number of samples per sym-
bol is equal to the cycle period P . Furthermore, the frequency-
selective channels Hs[n] and Hr[n] are both Rayleigh-fading
channels with a delay spread of 10 times the symbol duration and
an exponential power delay profile. In each Monte Carlo simula-
tion we draw new realizations of the channels. The independent
noises between SC and RC are both colored Gaussian generated
with a moving average filter of order 20 and correlated among
antennas. This correlation is generated by multiplying the noise
realizations with a random matrix with elements drawn from
unit complex normals. Moreover, we define the SNRs at SC and
RC as

SNR♣ = 10 log10

⎛
⎝ tr

(
R̂♣

)
tr

(
V̂♣

)
⎞
⎠ , (59)

where ♣ ∈ {s, r} and

R̂♣ =
1

MNP

MNP−1∑
n=0

(H♣[n] ∗ s[n]) (H♣[n] ∗ s[n])H ∈ CL×L

(60)

V̂♣ =
1

MNP

MNP−1∑
n=0

v♣[n]v
H
♣ [n] ∈ CL×L. (61)

Furthermore, we compare the proposed detectors with the
following benchmark techniques: The first one is the correlated
subspace detector proposed in [18], which employs the follow-
ing test statistic

K =

min(LI ,L)∏
i=1

1

1− k2i

H1

≷
H0

η, (62)

where ki is the ith sample canonical correlation between the SC
and the RC. The second competitor is the multiantenna extension
of the popular cross-correlation detector [14], [18] that uses the
statistic

C = | tr (RH
srRsr

) | H1

≷
H0

η, (63)

where

Rsr =
1

MNP

MNP−1∑
n=0

us[n]u
H
r [n], (64)

4Matlab code is available for download from: https://github.com/SSTGroup/
Cyclostationary-Signal-Processing

Fig. 4. ROC curves in a scenario with P = 2, N = 64, L = LI = 4, M =
20, a rectangular pulse, SNRs = −15 dB, and SNRr = −5 dB.

denotes the sample cross covariance matrix of SC and RC. It
should be noted that the cross-correlation detector does not
require any prior knowledge, whereas the correlated subspace
detector needs to know the number of antennas LI at the IO,
and our proposed techniques also need to know the cycle period
P . Generally, both P and LI could be estimated or they may be
known from the standards used by the IO.

To evaluate the performance of the proposed detectors, we first
choose a scenario with P = 2, N = 64, L = LI = 4, M = 20,
and a rectangular pulse, Fig. 4 shows the receiver operat-
ing characteristic (ROC) for SNRs = −15 dB at the SC and
SNRr = −5 dB at the RC. As can be seen, the proposed detec-
tors outperform the competing techniques. We observe that the
LMPIT-inspired detector performs better than the GLRT, while
the cross-correlation detector performs little better than chance.
Fig. 5 depicts the probability of detection versus the SNRs

for SNRr = 0 in the top plot and SNRr = −5 in the bottom
plot. The remaining parameters are chosen as P = 4, N = 128,
L = LI = 2, M = 20, a rectangular pulse, and pfa = 0.01.5

Again we can observe that the proposed detectors outperform the
competing techniques. In the SNRs range of practical interest,
the performance of the LMPIT-inspired test is better than that
of the GLRT. It is also shown that the performance drop due to
decreasing SNRr is smallest for the LMPIT-inspired test and the
GLRT whereas it is largest for the cross-correlation detector.

For another scenario with P = 3, N = 128, L = LI = 2,
M = 20 we study the influence of the pulse shape, i.e. the
amount of cyclostationarity present in the signal. A signal with
raised-cosine pulse with ρ > 0 has a non-zero cyclic PSD only
for the cycle frequency ±2π/P and on the stationary manifold
(for ρ = 0 it is only non-zero on the stationary manifold),
whereas the PSD of a rectangular pulse shaped signal is non-zero
for all harmonics of the cycle frequency [49]. Fig. 6 shows the
ROC for an SNRs = −15 dB at the SC and SNRr = −15 dB
at the RC for ρ = {0, 0.5, 1} and a rectangular pulse shape.

5Note that in a passive radar scenario pfa would be a few orders of magnitude
smaller.
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Fig. 5. Probability of detection vs. SNRs, where the top plot shows the results
for SNRr = 0 dB and the bottom plot for SNRr = −5 dB for the following
remaining parameters P = 4, N = 128, L = LI = 2, M = 20, a rectangular
pulse, and pfa = 0.01.

Fig. 6. ROC curves for roll-off factors ρ = {0, 0.5, 1} and a rectangular pulse
shaping in a scenario with P = 3, N = 128, L = LI = 2, M = 20, ρ = 0.9,
and SNRs = SNRr = −15 dB.

As can be seen, detection performance increases with the amount
of cyclostationarity present. Specifically, we can observe best
performance for the rectangular pulse and worst performance
for ρ = 0. Note that the detection performance does not drop
to zero for ρ = 0 as both proposed detectors also account for
the usual cross-coherence between RC and SC components on
the stationary manifold as can be seen in equations (56) and
(57). Now we will investigate the influence of the particular
choice of N and M on the detection performance. We should
note that N influences the spectral resolution, i.e., the bias of
the estimates, and M determines the variance of the estimates.

Fig. 7. Probability of detection forN = 16 andN = 128 for different number
of samples for P = 2, L = LI = 2, a rectangular pulse, SNRs = −18 dB, and
SNRr = −12 dB.

Fig. 8. ECDF of the test statistics under H0 and for white noise for the GLRT
(top) and the LMPIT-inspired test (bottom) for a scenario with P = 2, N = 32,
M = 16, L = LI = 2. The top figure also displays the approximation as a
product of beta random variables.
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Fig. 9. Same as Fig. 8, except for P = 2, N = 128, M = 16, L = LI = 2.

Hence, the choice ofN andM is a bias-variance trade-off, which
was already studied in [50] for a related problem. Fig. 7 shows
the probability of detection versus the total number of samples
NM for the GLRT and the LMPIT-inspired detector for two
different choices of N , namely, N = 16 and N = 128. If the
total number of samplesNM is rather small, we should sacrifice
spectral resolution by choosing a smaller N in order to decrease
the variance of the estimate with a largerM . On the other hand, if
a larger number of samples is available, we may choose a larger
N to increase the spectral resolution. Finally, we examine the
accuracy of the distributions under the null hypothesis obtained
for the GLRT and the LMPIT-inspired detector. The top plots
in Figs. 8 and 9 show the distribution of the logarithm of the
product of beta random variables and compare it to (i) the
distributions obtained numerically with white noise realizations
and (ii) the distribution obtained under H0, for N = 32 (Fig. 8)
and N = 128 (Fig. 9). As can be observed, the GLRs for white
noise and the product of beta random variables are an accurate
match independently of N , which is not to our surprise since
the product of beta random variables is derived for white noise.
Either distribution is a reasonably good, albeit not perfect, match

for the actual distribution under H0 for N = 32, and a very
good match for N = 128. Similar observations can be made for
distributions under the null hypothesis of the LMPIT-inspired,
which are shown in the bottom plots in Figs. 8 and 9.

VIII. CONCLUSION

In this paper we derived the GLRT for a two-channel passive
detection problem by exploiting cyclostationarity. We also ex-
amined the existence of optimal invariant tests for this problem.
As it turned out that neither the UMPIT nor the LMPIT exists,
we proposed an LMPIT-inspired detector. Both detectors, GLRT
and LMPIT-inspired, are functions of a cyclic cross-coherence
function, but only the GLRT accounts for the cyclic coherence
at the SC.

Possible future extensions of our work might consider the case
of unknown cycle frequencies as well as almost-cyclostationary
signals. Further extensions could be to remove the idealized
assumptions of complete cancellation of direct-path interference
and clutter at the SC and multipath propagation and clutter at
the RC.

APPENDIX A
PROOF OF THEOREM 1

The ML estimate Ŝ0 can be easily found considering the
block-diagonal structure of the covariance matrix under H0.
With results from complex-valued matrix differentiation [51],
the ML estimate is given by

Ŝ0 =

[
diagL(Qs) 0

0 diagLP (Qr)

]
. (65)

In order to find the ML estimate under H1 we note that the
permutation of the elements in w, given by

w̃ = Tw, (66)

whereT = (L2NP,NP ⊗ IL), yields a block-Toeplitz structured
covariance matrix of w̃ with block size 2LP . This is easily
shown by noticing that w̃ contains the samples us[n] and ur[n]
in alternating order and considering that [us[n]

T ur[n]
T ]T ∈

C2L is a 2L-variate CS process with cycle period P . Again
this block-Toeplitz covariance matrix can be approximated by a
block-circulant matrix, and the latter can be block-diagonalized
by the transformation

z̃ = (LNP,N ⊗ I2L)(FNP ⊗ I2L)
Hw̃, (67)

i.e., the covariance matrix S̃1 = E[z̃z̃H |H1] ∈ S2LNP
2LP is block-

diagonal with block size 2LP . Exploiting properties of the
Kronecker product we can rewrite (67) as

z̃ =
[
(LNP,NFH

NP ⊗ I2)⊗ IL
]
w̃. (68)

Considering (10), the linear transformation of w is given by

z =
[
(I2 ⊗ LNP,NFH

NP )⊗ IL
]
w. (69)

It can be observed that (68) and (69) are equal up to the commuta-
tion of the Kronecker product inside the parentheses. We should
further notice that the matrix T commutes with that product.
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After putting these pieces together, z̃ and z are also related by
the linear transformation T as

z̃ = Tz. (70)

Hence, similar to w̃, z̃ containsus(θn) andur(θn) in alternating
order. As S̃1 is block-diagonal, we can easily find its ML estimate
as

ˆ̃S1 = diag2LP

(
Q̃
)
, (71)

where Q̃ = TQTT . After exploiting the invariance of the ML
estimate [47], we find

Ŝ1 = TT ˆ̃S1T = TT diag2LP

(
Q̃
)
T. (72)

In order to express this as a function of the sample covariance
matrix Q, let us study the effect of the permutation. The (k, l)th

L× L block of ˆ̃S1 with k = mNP + i and l = nNP + j for
m,n = 0, 1 and i, j = 0, . . . , NP − 1 is shifted to the (k′, l′)th
entry in Ŝ1 with k′ = 2i+m and l′ = 2j + n. Applying the
permutation to every element, (72) can be expressed as a function
of Q as

Ŝ1 =

[
diagLP (Qs) diagLP (Qsr)

diagLP (Qrs) diagLP (Qr)

]
. (73)

Now we plug the ML estimates (65) and (73) into the likelihood
ratio (17) to obtain (74) shown at the bottom of this page,
where D and C are given by (20) and (21), respectively. In
this expression, we exploited the fact that the determinant of a
block-diagonal matrix is equal to the product of the determinants
of the single blocks, and the expression for the determinant of a
2× 2 block matrix with invertible blocks.

APPENDIX B
PROOF OF PROPOSITION 1

Let us define the matricesX[n] andY[n] as the concatenation
of all realizations M of x[n] and y[n] given by equations (12)
and (13) as

X[n] = [x1[n] · · ·xM [n]] ∈ CLP×M , (75)

Y[n] = [y1[n] · · ·yM [n]] ∈ CLP×M . (76)

Moreover, we define

Up[n] = [us1(θpN+n) · · ·usM (θpN+n)] ∈ CL×M , (77)

Vp[n] = [ur1(θpN+n) · · ·urM (θpN+n)] ∈ CL×M , (78)

for p = 0, . . . , P − 1, and the lth rows for l = 1, . . . , L of
these matrices are referred to as u(l)

p [n] ∈ C1×M and v
(l)
p [n] ∈

C1×M , respectively. Now X[n] is partitioned as

X[n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Xp[n]

X
(l)
p [n]

u
(l)
p [n]

...

⎤
⎥⎥⎥⎥⎥⎥⎦
, (79)

where

Xp[n] =
[
UT

0 [n] · · · UT
p−1[n]

]T
∈ CLp×M , (80)

X(l)
p [n] =

[
u
(1)T
p [n] · · · u

(l−1)T
p [n]

]T
∈ C(l−1)×M . (81)

Equivalently, we can partition Y[n] into Yp[n] ∈ CLp×M ,

Y
(l)
p [n] ∈ C(l−1)×M , and v

(l)
p [n] ∈ C1×M , and define

Ȳ(l)
p [n] =

[
Yp[n]

Y
(l)
p [n]

]
. (82)

Let us now provide some generic projection matrices, which will
be used subsequently:

P⊥
A = I−AH

[
AAH

]−1
A, (83)

P⊥
AB = I−

[
AH BH

]([
A

B

] [
AH BH

])−1 [
A

B

]
,

(84)

PBP⊥
A
= P⊥

ABH
(
BP⊥

ABH
)−1

BP⊥
A, (85)

for some matrices A and B of suitable dimensions. With these
considerations we can rewrite the likelihood ratio given in (74)
in terms of the Gram matrices as6

det
(
Ŝ1

)
det

(
Ŝ0

) =

∏N
n=1 det

(
ZZH

)
∏N

n=1

∏P−1
p=0 det

(
UpUH

p

)
det (YYH)

, (86)

where Z = [XT YT ]T and in the numerator we have exploited
the permutation invariance of the determinant. As shown in [47],
we can decompose the determinants into products of scalars to
obtain

det
(
UpU

H
p

)
=

L∏
l=1

u(l)
p P⊥

X
(l)
p
u(l)H
p (87)

det
(
YYH

)
=

P−1∏
p=0

L∏
l=1

v(l)
p P⊥

Ȳ
(l)
p
v(l)H
p (88)

det
(
ZZH

)
=

P−1∏
p=0

L∏
l=1

u(l)
p P⊥

XpX
(l)
p
u(l)H
p v(l)

p P⊥
XȲ

(l)
p
v(l)H
p .

(89)

6We drop the index [n] for notational convenience.

G
1
M =

det
(
Ŝ1

)
det

(
Ŝ0

) =
det

(
diagLP (Qs)− diagLP (Qsr) diagLP (Qr)

−1 diagLP (Qrs)
)

det (diagL(Qs))
=

N∏
k=1

det
(
Dk −CkC

H
k

)
(74)
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We can further decompose these matrices as [46]

P⊥
X

(l)
p

= P⊥
XpX

(l)
p

+PXpP⊥
X

(l)
p

, (90)

P⊥
Ȳ

(l)
p

= P⊥
XȲ

(l)
p

+PXP⊥
Ȳ

(l)
p

. (91)

Finally, we can plug in (87), (88), and (89) into (86) to obtain

G
1
M =

N∏
n=1

P−1∏
p=0

L∏
l=1

u
(l)
p P⊥

XpX
(l)
p

u
(l)H
p

u
(l)
p

(
P⊥

XpX
(l)
p

+PXpP⊥
X

(l)
p

)
u
(l)H
p

×
v
(l)
p P⊥

XȲ
(l)
p

v
(l)H
p

v
(l)
p

(
P⊥

XȲ
(l)
p

+PXP⊥
Ȳ

(l)
p

)
v
(l)H
p

. (92)

In order to characterize the distribution of the last expression
under the null hypothesis, we will again exploit the invariances
of the likelihood ratio. Under H0 the vector z can always be
pre-whitened and without loss of generality, we can assume
that z

N→∞∼ CN (0, I2LPN ) or, since we consider M i.i.d. obser-
vations, u(l)

p
N→∞∼ CN (0, IM ) and v

(l)
p

N→∞∼ CN (0, IM ). There-
fore, each of the quadratic terms in (92) is chi-squared distributed
with degrees of freedom equal to two times the rank of the
projection matrices involved in each of the quadratic terms.
Specifically, the ranks of these matrices are given by

αlp = rank(P⊥
XpX

(l)
p
) = M − (Lp+ l − 1), (93)

αp = rank(PXpP⊥
X

(l)
p

) = Lp, (94)

βlp = rank(P⊥
XȲ

(l)
p
) = M − (LP + Lp+ l − 1), (95)

β = rank(PXP⊥
Ȳ

(l)
p

) = LP. (96)

Finally, considering that the ratio A
A+B ∼ Beta(γ1/2, γ2/2) if

A ∼ χ2
γ1

and B ∼ χ2
γ2

, the proof follows.

APPENDIX C
PROOF OF LEMMA 1

First we observe that the terms det(S0)
−M and det(S1)

−M

in (30) neither depend on the observations nor the invariances.
Hence, they can be discarded in the ratio. Secondly, let us focus
on the denominator of the ratio, specifically, on the exponential
term. Taking into account thatΨ andS0 are block-diagonal with
two blocks, the denominator can be simplified as

tr
(
ΨQΨHS−1

0

)
= tr

(
PsGQsG

HPT
s S

−1
s

)
+ tr

(
PrHQrH

HPT
r S

−1
r

)
. (97)

Applying the change of variables G → GB
− 1

2
s and H →

HB
− 1

2
r , where Bs = diagL(Qs) and Br = diagLP (Qr),

yields

tr
(
ΨQΨHS−1

0

)
= tr

(
PsGB

− 1
2

s QsB
− 1

2
s GHPT

s S
−1
s

)
+ tr

(
PrHB

− 1
2

r QrB
− 1

2
r HHPT

r S
−1
r

)
.

(98)

We should note that the data-dependent terms B
− 1

2
s QsB

− 1
2

s and

B
− 1

2
r QrB

− 1
2

r are whitened on their main diagonal blocks, i.e.,
these are given by IL and ILP , respectively. These whitened
main diagonal blocks are the only blocks of those matrices
involved in the trace operations since the other matrices are
block-diagonal, in the first trace operator with block size L× L
and in the second trace operator with block size LP × LP . For
this reason the denominator can be discarded in the ratio (30).

Hence, L simplifies as

L ∝
∑

VN
0 ,VN

1 ,U

∫
G

∫
H
| det(G)|2 M | det(H)|2 M

× exp
{−M tr

(
ΨQΨHS−1

1

)}
dGdH. (99)

In order to further reduce this expression, we first consider
the structure of the inverse covariance matrix S−1

1 . Let us
define the matrices Σ = S−1

1 and Ψ̄ = ΨQΨH , where

these matrices can be partitioned as Σ =

[
Σ1 Σ12

Σ21 Σ2

]
and

Ψ̄ =

[
Ψ̄1 Ψ̄12

Ψ̄21 Ψ̄2

]
. Note that each of the four LNP -sized

blocks in Σ are block-diagonal with block size LP .

Furthermore, after another change of variables G → GB
− 1

2
s

and H → HB
− 1

2
r , the blocks of Ψ̄ are given by Ψ̄1 =

PsGB
− 1

2
s QsB

− 1
2

s GHPH
s , Ψ̄2 = PrHB

− 1
2

r QrB
− 1

2
r HHPH

r

and Ψ̄12 = Ψ̄
H
21 = PsGB

− 1
2

s QsrB
− 1

2
r HHPH

r . Finally, putting
things together, (99) becomes

L ∝
∑

VN
0 ,VN

1 ,U

∫
G

∫
H
| det(G)|2 M | det(H)|2 M

× e−M tr(Ψ̄1Σ1)e−2 M tr(Ψ̄12Σ21)e−M tr(Ψ̄2Σ2)dGdH.
(100)

In order to further disentangle this expression, we consider
the traces in the exponential terms individually. Introducing the
change of variables G → PT

s diagL(Σ1)
− 1

2PsG and consider-
ing that the trace is given by the sum of the diagonal elements,
tr(Ψ̄1Σ1) simplifies to

tr(Ψ̄1Σ1) = tr
(
GGH

)
+

N∑
k=1

P∑
m,n=1
m �=n

tr
(
Γ
(m,n)
k G

(n,n)
k D

(n,m)
k G

(m,m)H
k

)
, (101)

where we also considered that both Γ and D, given by (34) and
(20), respectively, are whitened on their L× L main diagonal
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and G ∈ G. It should be noted that (101) depends on unknown
parameters through Γ.

The second exponential term in (100) can be reduced by

introducing the change of variables H → PT
r Σ

− 1
2

2 PrH as

tr
(
Ψ̄12Σ21

)
=

N∑
k=1

tr
(
ΛkGkCkH

H
k

)
, (102)

where Λ is given by (36).
Finally, by plugging in the previous change of variables, the

last exponential term in (100) becomes

tr
(
Ψ̄2Σ2

)
= tr

(
Σ

− 1
2

2 PrHB
− 1

2
r QrB

− 1
2

r HHPT
r Σ

− 1
2

2 Σ2

)
= tr

(
HHH

)
, (103)

where the last simplification follows from the fact that H is

block-diagonal with block size LP and B
− 1

2
r QrB

− 1
2

r is white
on its LP -sized main diagonal blocks. The proof follows by
plugging (101), (102), and (103) into (100).

APPENDIX D
PROOF OF THEOREM 2

Let us first focus on (41), which can be simplified in (104)
shown at the bottom of this page, where the integrals involving
the cross-terms of the square, i.e., those elements of the sum
that are not multiplied by themselves, are zero since they are
equal to their opposites as can be seen by applying the change
of variables G

(n,n)
k → −G

(n,n)
k . Now (104) became the same

expression as in Appendix C in [27] and we can simplify it in
the same way to obtain

L3 ∝ LS =
N∑

k=1

||Dk||2, (105)

where D is given by (20). Secondly, we can reduce (43) in
(106) shown at the bottom of this page, where the cross-terms of
the square cancel out by another change of variables G(j,j)

k →

−G
(j,j)
k or H

(l,i)
k → −H

(l,i)
k , respectively. Finally, following

similar steps as in Appendix C of [27], we obtain

L5 ∝ LSR =

N∑
k=1

||Ck||2. (107)

It should be noted that L3 and L5 are equal to LS and LSR up
to constant terms that depend on data-independent but unknown
values in Γ and Λ. These constant terms are taken into account
via one constant γ, which allows us to express (38) as

L ∝ LS + γLSR. (108)

APPENDIX E
PROOF OF PROPOSITION 2

Recall that the sample coherence matrix D is given by

D = diagL (Qs)
−1/2 diagLP (Qs) diagL (Qs)

−1/2 , (109)

and considering the block-diagonal structure of the matrices, its
(i, j)th L× L element in the kth LP × LP block is given by

D
(i,j)
k =

(
Q

(i,i)
sk

)−1/2

Q
(i,j)
sk

(
Q

(j,j)
sk

)−1/2

, (110)

for k = 0, . . . , N − 1 and i, j = 0, . . . , P − 1. These elements
of the sample covariance matrix can again be expressed as
samples of the cyclic PSDs similar to (54). Hence, D(i,j)

k can be
written as a function of frequency θiN+k as

D
(i,j)
k = D(i−j)(θjN+k) =

[
Π(0)

ss

(
θjN+k +

2π

P
q

)]− 1
2

×Π(i−j)
ss (θjN+k)

[
Π(0)

ss (θjN+k)
]− 1

2

, (111)

and the proof follows with q = i− j.
Similarly the (i, j)th L× L element in the kth LP × LP

block of the sample cross-coherence matrix

C = diagL (Qs)
−1/2 diagLP (Qsr) diagLP (Qr)

−1/2 .
(112)

L3 =
M2

2

∑
VN

0 ,VN
1 ,U

∫
G
β(G)

⎡
⎢⎢⎣

N∑
k=1

P∑
m,n=1
m �=n

tr
(
Γ
(m,n)
k G

(n,n)
k D

(n,m)
k G

(m,m)H
k

)
⎤
⎥⎥⎦
2

dG

∫
H
β(H)dH

∝
∑

VN
0 ,VN

1 ,U

∫
G
β(G)

N∑
k=1

P∑
m,n=1
m �=n

tr2
(
Γ
(m,n)
k G

(n,n)
k D

(n,m)
k G

(m,m)H
k

)
dG (104)

L5 =
M2

2

∑
VN

0 ,VN
1 ,U

∫
G

∫
H
β(G)β(H)

⎡
⎣ P∑
i,j,l=1

tr
(
Λ

(i,j)
k G

(j,j)
k C

(j,l)
k H

(l,i)H
k

)⎤⎦
2

dGdH

∝
∑

VN
0 ,VN

1 ,U

∫
G

∫
H
β(G)β(H)

P∑
i,j,l=1

tr2
(
Λ

(i,j)
k G

(j,j)
k C

(j,l)
k H

(l,i)H
k

)
dGdH (106)
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can be written as

C
(i,j)
k =

(
Q

(i,i)
sk

)−1/2
P−1∑
l=0

Q
(i,l)
srk

(
Q

(l,j)
rk

)−1/2

, (113)

since the kth diagonal blocks of Qsr and Qr are both full
matrices whereas the kth block of Qs is block-diagonal with
block size L. Again C

(i,j)
k can be expressed as a function of

θjN+k as

C
(i,j)
k = C

(i−j)
k (θjN+k) =

[
Π(0)

ss (θjN+k +
2π

P
q)

]− 1
2

×
P−1∑
l=0

Π(i−l)
sr (θlN+k)

[
Π(l−j)

rr (θjN+k)
]− 1

2

, (114)

and with q = i− j the proof follows.
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