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Multi-Channel Factor Analysis With
Common and Unique Factors

David Ramirez

Abstract—This work presents a generalization of classical factor
analysis (FA). Each of M channels carries measurements that
share factors with all other channels, but also contains factors that
are unique to the channel. Furthermore, each channel carries an
additive noise whose covariance is diagonal, as is usual in factor
analysis, but is otherwise unknown. This leads to a problem of
multi-channel factor analysis with a specially structured covariance
model consisting of shared low-rank components, unique low-rank
components, and diagonal components. Under a multivariate nor-
mal model for the factors and the noises, a maximum likelihood
(ML) method is presented for identifying the covariance model,
thereby recovering the loading matrices and factors for the shared
and unique components in each of the M multiple-input multiple-
output (MIMO) channels. The method consists of a three-step
cyclic alternating optimization, which can be framed as a block
minorization-maximization (BMM) algorithm. Interestingly, the
three steps have closed-form solutions and the convergence of
the algorithm to a stationary point is ensured. Numerical results
demonstrate the performance of the proposed algorithm and its
application to passive radar.

Index Terms—Block minorization-maximization (BMM) algo-
rithms, expectation-maximization (EM) algorithms, maximum
likelihood (ML) estimation, multi-channel factor analysis (MFA),
multiple-input multiple-output (MIMO) channels, passive radar.
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1. INTRODUCTION

LASSICAL factor analysis (FA) was pioneered by Spear-

man in his seminal paper [1]. Spearman and others applied
FA to problems in psychology, and especially to the analysis of
the correlation of children’s scores across different academic
subjects. Later, with the work of Lawley, Anderson, and oth-
ers [2]-[4], a more rigorous approach was developed, which
made FA a well-established technique in multivariate statistics.
FA now finds many applications in science and engineering.
For instance, in the field of array signal processing, FA has
been applied to radio astronomy [5], [6], cognitive radio [7],
direction-of-arrival estimation [8]-[10], modal analysis [11],
[12], and detection or source enumeration [13]-[16].

In the classical FA model, measurements in a single MIMO
channel are modeled as a set of unknown factors scaling the
modes of an unknown factor loading matrix, plus a multivariate
normal noise of unknown, but diagonal, covariance. The factors
are typically treated as multivariate normal, with identity co-
variance, so that the net effect is to posit a multivariate normal
measurement with a structured covariance consisting of an un-
known low-rank component to account for the factor loadings
plus an unknown diagonal matrix to account for the additive
noise. Thus, in second-order FA, the problem is to estimate a low-
rank plus diagonal covariance matrix from several multivariate
observations. This model has been recently extended in [17]
to consider more complicated covariance structures, i.e., not
diagonal, but this structure needs to be sparse and known. Even
another extension was developed in [18], where the precision
matrix, the inverse of the covariance matrix, is assumed to be
composed by a low-rank component plus a sparse one. The
sparsity pattern in this model enforces relations of conditional
independence between observed variables, whereas the low-rank
component favors models explained by a reduced number of
latent hidden factors.

Common estimation approaches for the FA model are based
on the maximum likelihood (ML) criterion. Unfortunately, even
under the Gaussian assumption, the maximization problem has
no closed-form solution and numerical methods must be em-
ployed. A convergent numerical procedure for obtaining the
maximum likelihood estimates was first given by Joreskog [19],
[20] (cf. Chapter 9 in [3]). Other optimization approaches have
been investigated for this problem, ranging from steepest de-
scent [4] and alternating optimization methods [7], [21], [22],
to Expectation-Maximization (EM) algorithms [23], [24]. Most
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of the proposed techniques assumed known the number of
factors, i.e., the dimension of the low-rank component. When
this is not the case, it needs to be estimated [25]. Moreover, if
we abandon the ML criterion, there are other alternatives. For
instance, the work in [26] derives a robust technique based on the
low-rank plus sparse factorization of the precision matrix that
also provides an estimate for the number of factors as a result of
the optimization procedure.

The technique of FA has been extended to multiple channels of
multivariate observations. To the best of our knowledge, the first
generalization was developed by Tucker [27], where he proposed
the so-called inter-battery FA. In this work, the observations of
two channels are composed by linear combinations of common
factors and independent noises without a particular covariance
structure. Additionally, he derived an estimation algorithm based
on the least squares (LS) criterion, which was later related to
canonical correlation analysis (CCA) by Browne [28]. The ex-
tension of the inter-battery FA model to more than two channels
was developed in [29], [30].

The recent work in [17] also proposes a different generaliza-
tion of FA to several channels, which assumes that the factors at
each channel are independent, but the noise covariance matrix
is common. This work also allows for a number of factors in
each channel that may be different. A different generalization is
presented in [31], and termed group factor analysis (GFA). In
GFA, the factors may be common to all channels or to a subset
of them. Other work related to multi-channel factor analysis
includes the parallel factor (PARAFAC) analysis model [32]
and independent vector analysis (IVA) [33]. Our model for
the channel covariance differs significantly from the channel
covariance in the PARAFAC model [32]. The multiple channels
(i.e., the third dimension in the three-way array) of PARAFAC
are obtained from displaced but otherwise identical subarrays,
which induces a shift-invariant structure in the loading matrices
of the common factors. Further, the noise covariance model
in [32]is white. Our model is different is several aspects, namely,
we never have rotational invariance, we have both common and
unique (or channel-specific) factors, and our model for the noise
covariance is diagonal with unknown variances. The standard
model in IVA accounts for the dependence of a set of common
sources or factors observed through several mixing matrices,
but it does not consider channel-specific factors or noises whose
variances are unequal [33].

This paper extends the inter-battery FA model to more than
two channels and to noise covariance structures that account for
additive noise and unique channel factors, which are missing in
the original inter-battery analysis of Tucker. This multi-channel
FA (MFA) model has many applications in signal processing,
machine learning, and communications. In multi-view learn-
ing [34], for example, common factors would model information
that is shared among all views and unique factors would account
for effects that are specific to each view. Similarly, MFA could
be used to fuse different modalities of brain imaging data (EEG,
fMRI, and sMRI) [35], [36], where common factors account for
information contained in all modalities, and unique factors are
used to model information specific to each modality. As another
example, the MFA model may have application in cellular
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networks that apply coordinated multipoint (CoMP) processing,
where mobile users at the edge of a cell could be connected
to several base stations (BS) thus playing the role of common
factors in an MFA model. Each BS can also be receiving signals
from a few specific users, either in the corresponding macro-cell
or from a nearby small-cell, which would be the unique factors
in each BS channel. This and similar multi-tier signal models are
commonly used in heterogeneous cellular networks (HetNets)
[37]. Finally, the proposed model is particularly relevant for
passive radar since it accounts for leakage of a reference channel
transmission into the surveillance channel [22]. We will describe
with more detail the application of our MFA model to passive
radar in Section I'V.

The iterative procedure to obtain the maximum likelihood
estimate of the multi-channel FA model developed in this paper
bears resemblance to ML estimation in the FA model, where
there also does not exist a closed-form solution. The iterative
procedure consists of three steps and was derived following the
block minorization-maximization approach [38], [39]. In the
first step, a closed-form solution for the loading matrices of
the common factors is found by maximizing the log-likelihood.
In the second step, the estimate of the loading matrices for the
uncommon factors is obtained by maximizing a global lower
bound of the log-likelihood, similarly to the EM algorithm.
The third step also returns a closed-form solution for the es-
timate of the diagonal noise covariance matrices by maximizing
another minimizer obtained by linearizing the aforementioned
EM-based lower bound. We prove that this algorithm converges
to a stationary point of the log-likelihood and demonstrate its
performance on several illustrative problems.

A. Outline

The outline of this paper is as follows: Section II summarizes
the classical FA model, as well as an ML estimation proce-
dure based on an alternating optimization approach. A brief
introduction to inter-battery FA and the proposed generalization
are presented in Section III. This section also describes the
ML estimation of the unknown parameters. The alternating
optimization ML algorithm is derived in Section ITI-B. Finally, in
Section IV the performance of the proposed method is illustrated
by means of numerical simulations, and the main conclusions
are summarized in Section V.

B. Notation

In this paper, matrices are denoted by bold-faced upper case
letters, bold-faced lower case letters denote column vectors, and
scalars are denoted by light-face lower case letters. A real matrix
of dimension M x N is denoted A € RM*N and x ¢ RM
indicates that x is a real vector of dimension M . The superscript
(-)T denotes transpose, and the determinant, Frobenius norm
and trace of a matrix A are denoted by det(A), ||A| F and
tr(A), respectively. The notation x ~ AN/ (u, R) indicates that
x is an M -dimensional Gaussian random vector of mean g
and covariance matrix R and E[] represents the expectation
operator. The identity matrix of size L x Lis Iy, 07, v denotes
the zero matrix of the dimension M/ x N. We use A'/2 to denote
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the symmetric square root matrix of the symmetric matrix A.
Finally, diag(A) constructs a diagonal matrix from the diagonal
of A, the operator blkdiag denotes block-diagonal concatenation
of matrices, and §[n] denotes the Kronecker delta.

II. CLASSICAL FA

In single-channel (or classical) factor analysis (FA) [2]-[4],
the real-valued observations x € RE are modeled as’

x =Hf +e, (D

where f € RP contains the p factors, and H € RL*P is the
factor loading matrix; p is usually much smaller than L. The
L-dimensional noise vector e is typically assumed zero-mean,
Gaussian distributed and its components are independent, i.e.,
e ~ N1(0, X), where the covariance matrix X is diagonal with
positive elements. In classical FA, the factors f are assumed to be
zero-mean Gaussian with identity covariance. As a consequence,
the measurements x are zero-mean Gaussian with an L X L
covariance matrix

R=HH” + %. )

That is, the covariance matrix is a positive semi-definite rank-p
matrix plus a diagonal covariance ¥ = diag(o?,...,0%), with
o? > (. The FA model implies that, conditioned on the factors,
the observations are uncorrelated, and hence the common factors
explain all the dependence structure among the observations.
The invariances of this model determine the identifiability
of this second-order model. The covariance model of (1) is
invariant to the transformation H — HQ,f — Q”f, where
Q is any orthogonal matrix. The model is therefore unique only
up to equivalence class of frames H, denoted by the subspace
(H), which is a point on a Grassmann manifold of dimension
p. As a unique representative of this class of equivalence, we
take a loading matrix H such that its p X p upper block is
lower triangular with positive ordered diagonal values. Clearly,
this particular representative achieves the same log-likelihood
in the second-order FA model as any other point in (H). As
we shall see, the choice of this unique representative is moti-
vated to ensure the convergence of the proposed algorithm to
a stationary point, but is otherwise irrelevant. Moreover, under
the aforementioned assumption, any estimation procedure will
provide a unique solution only when the number of factors p is
sufficiently small in comparison to the dimension of the ambient
space. A model is said to be generically identified if we can
find a unique FA factorization as in (2) for almost every pair
of matrices {H, X} viewed as points in a parameter space of
dimension (Lp + L) [40]. The non-identifiable models therefore
should live in a set of zero Lebesgue measure. According to this
definition, it was proven in [41] that a necessary and sufficient
condition for a FA model to be generically identified is

(L—p)*—(L+p)>0. 3)
ITo simplify the exposition, the case of real-valued channels is consid-

ered throughout this work, but its extension to the complex-valued case is
straightforward.

Other definitions of identifiability are possible. In [17], a
model is considered identifiable if the corresponding Fisher
information matrix is nonsingular. Using this definition, it is
shown in [17] that (3) is a necessary (but not sufficient) condition
for the uniqueness of the solution.

A. ML Estimation in the FA Model

Maximum likelihood is the most common principle for es-
timation in factor analysis. However, since it is not possible to
find the ML estimates of { H, 3} in closed-form, solutions based
on iterative procedures have been typically proposed. These
include numerical procedures by Joreskog based on first-order
or second-order derivatives [19], [20], alternating optimization
methods [7], [21], [22], and EM-type algorithms [21], [23], [24].

In our experience, alternating optimization methods are
preferable for moderate-size problems. For instance, the al-
ternating optimization approach in [22] operates as follows.
It starts with the likelihood function for N observations of
x, x[1],...,x[N], which is to be maximized with respect to
the factor loading matrix H and the diagonal noise covariance
matrix 3.

The likelihood of the observations is

_ 1 N Rt
I(H,X) = (27T)LN/2 W (R) exp [— 5 tr(R S)] , 4
where
R
S=% ; x[n]x"[n], (5)

is the sample covariance matrix. The ML estimation problem
can be re-formulated as

maximize L(H,X), (6)

where H denotes the set of structured n x p matrices such that
its p X p upper block is lower triangular with positive ordered
diagonal values and the objective function is

L(H,X) = —logdet(HH" + X) — tr [(HH” + =) 'S].

(N
There is no closed-form solution to the problem (6), but it is
possible to find a local maximum of the likelihood by applying
an alternating optimization approach. Concretely, [22] proposed
an algorithm to find the estimate of the precision matrix, which
has an equivalence in terms of the parameters of the covariance
matrix. Then, defining the noise-whitened sample covariance
matrix

S=3"en™? ®
and its eigenvalue decomposition (EVD)
S = W diag (Xl,...,XL) w7, ©)
with 5\2 > /N\i+1’ the estimate of H is
i = 3'/°"WD!/2q, (10)

where 3 is the previous estimate of X, D= diag(cil, PN
dp,0,...,0), with d; = max(X\; — 1,0), and Q is the unique
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orthogonal matrix that imposes the structure of the set H. Con-

cretely, let B be the p x p upper block of '*WD/2 and
define its LQ decomposition as LQg = B with the diagonal
elements of L ordered in decreasing absolute value, then Q is
given by

Q = Qjysign [diag (L)] . (11)
Now, given I:I, the estimate of X is
3 = diag (S - ﬂﬂT) . (12)

Since each step of the above procedure obtains the unique
minimum of the the cost function, this alternating algorithm is
ensured to attain a stationary point of the log-likelihood [42].

III. MULTI-CHANNEL FACTOR ANALYSIS

The first generalization of FA to more than one channel was
introduced by Tucker in the fifties [27]. This generalization,
known as inter-battery FA, aims at extracting factors f common
to two sets of variables (or batteries), and is based on the
generative model

x1 = Hif + ey,

xo = Hof + ey, (13)

where the covariance matrices of the noise vectors does not have
any further structure besides being arbitrary positive definite
matrices. In the work of Tucker, a solution is proposed based on
a least squares (LS) criterion, which results in the singular value
decomposition (SVD) of the sample cross-covariance matrix
between the two data sets. Interestingly, a few decades later,
Browne presented a connection between the inter-battery FA
and canonical correlation analysis (CCA) in [28]. The extension
of the inter-battery FA model to more than two channels was
developed in [29], [30].

We propose the following generalization of inter-battery FA
analysis. We consider M > 2 channels with noise covariance
matrices that have further structure to account for the existence in
each channel of a factor component that is unique to the channel.
The generative model is

XZZHZf+G1fZ+e“ Z:].,,M, (14)

where H; € RL*? is the loading matrix in channel i for the
common factors f and G; € R¥*Pi is the loading matrix in
channel ¢ for the unique factors f;; e; ~ N7,(0,3;) is the
noise in channel ¢. This model is illustrated in Fig. 1 for
M = 3. The noise covariance matrices, 3;, are diagonal and
invertible, and the noises at different channels are uncorrelated:
Ele;e]] = X;d[i — j]. Moreover, common and specific factors
are uncorrelated: E[f fl] = 0pxp,, Vi, and E[fiij] = 0p,xp; >
for i # j. In this multi-channel generative model, the common
factors explain the inter-channel dependence structure, whereas
the unique factors explain the intra-channel dependence struc-
ture. Further, conditioned on both the common and unique
factors, the multi-channel observations are uncorrelated. This
structure makes our model different from other multi-channel
models assumed in PARAFAC [32], IVA [33] or multiset CCA
[43], [44].
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Fig. 1. Diagram of the proposed multi-channel factor analysis model for M =

3 channels. The observations are represented by x;; the loading matrices for the
common factors f and for the unique factors f; are depicted by H; (blue) and
G, (green), respectively; e; is the channel noise, fori = 1,..., M

As with single-channel FA, only the subspaces (H) and
(G;) can be identified. Thus, without loss of generality, we
consider the factors to be normalized as follows: E[f f7] =1,
and E[fif!] =1,,.

Assuming a multivariate normal model for common and
uncommon factors, the composite vector x = [x7 ---x1 ]T is
distributed as V1, (0, R) with a structured covariance matrix that

1S

R=HH” +E. (15)

Here, the composite loading matrix is H = [H{ ---H%,]T €
RL*P with L = Zf\il L;. The unique-factors-plus-noise co-
variance matrix is

E = blkdiag[E,, E,,...,Ey] =GGT + 3,  (16)

where the composite loading matrix for the uncommon factors
and the composite noise covariance matrix are, respectively,

G = blkdiag[G1, Ga, ..., Gy, (17)
and
3 = blkdiag[3;, Xo, ..., X ). (18)

Moreover, E; = G;G! + ¥, with G; € RL*Pi and 3; €
RL'i ><Li.

The identification of a second-order MFA model is not unique
due to the problem invariances. However, as explained in Sec.
II, we can choose unique representives for the loading matrices
for common and unique factors as follows. The unique solution
for H is such that its p x p upper block is lower triangular with
positive ordered diagonal elements and, similarly, the p; X p;
upper block of G; is also lower triangular with positive ordered
diagonal elements. We will denote the sets of matrices with this
structure by H and G;, respectively, and G denotes the set of
matrices G = blkdiag[G1, Ga, ..., G /], with G; € G;. These
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constraints yield unique solutions for the loading matrices,
and are necessary to ensure the convergence of the alternating
optimization algorithm to a stationary point. Moreover, as in
single-channel FA, the MFA model is not identifiable without
a constraint on the number of parameters to be identified. In
the following, we present a necessary condition on the largest
number of common and specific factors that yield a unique
solution for the covariance matrix. To do so, we need to count
how many knowns and unknowns the model has. The number
of knowns is given by the number of different elements of the
sample covariance matrix, which are L(L + 1)/2. The number
of unknowns is slightly more involved to compute. Let us
start with the number of unknowns in E;, which are those of
the classical FA model, i.e., L; + L;p; — p;(p; — 1)/2. Finally,
since the number of unknowns in HH” is Lp — p(p — 1) /2, for
the solution to be unique it is required that

L(L+1) p(p—1)
2 p+ ==
M
i(p; — 1
—Z (Li“rLipi_ Lp; >> >0.  (19)
=1

Additionally, after removing the common factors each single-
channel FA model must be also identifiable, which adds the
following conditions

(Li —pi)* = (Li +p;) >0, i=1,...,M. (20)

A. ML Estimation in the MFA Model

In this section, we present the ML estimation of the unknown
parameters in the MFA model. In particular, assuming that [NV
observations of each channel are available, x;[1], . .., x;[NV], i =
1,..., M, the goal is to estimate the composite common-factor
loading matrix H, the composite channel-specific loading matrix
G, and the composite diagonal noise covariance matrix X that
maximize the log-likelihood. Hence, the ML estimates of H, G,
and X are obtained by solving the maximization problem

maximize L (H,G,X), (21
HecH,GeG, 2
where the objective function is
L(H,G,X) = —logdet(R) —tr (R™'S), (22)

with R given in (15) and the sample covariance matrix given
in (5) with the vector of multi-channel observations x[n] =
] ] - x5y ]

The maximization problem in (21) does not have a closed-
form solution. In this work, we propose therefore to use an
alternating optimization approach, as described in the following
section.

B. Alternating Optimization Algorithm

We propose a cyclic alternating-optimization algorithm for
maximizing the log-likelihood function in (22) subject to the
constraints that ensure the uniqueness of the loading matrices for
common and unique factors. The procedure applies three steps in
acyclic fashion, which are derived using the block minorization-
maximization (BMM) framework [38], [39]. Ateach of the three

steps, a subset of variables is optimized by maximizing a global
lower bound of the cost function, while the remaining variables
are fixed at previously estimated values. The fixed parameters

at the (k + 1)th iteration are denoted by H*®) G and fl(k),
whereas the parameters to be optimized are denoted without a
hat. That is, £(H, G®) 3(%) is the objective function at the
(k + 1)th iteration for fixed values of G and X.

a) Step 1. Estimation of H: The first step of the proposed
method consists in estimating H, assuming that G and X are
fixed. Thus, the optimization problem at the (k + 1)th iteration
is

(Py) maximize L (H7 G, ﬁ](k)) . (23)

HecH
In this case, it is possible to obtain a closed-form solution by
maximizing the log-likelihood directly, that is, no lower bound

is necessary. To do so, we define
E=GHGWT L 5k (24)

which is fixed since (%) and G*) are fixed at their values of

the kth iteration. The whitened sample covariance matrix and

its eigenvalue decomposition are
S=EY2SEY2 = WAW”

where A = diag(S\l, ce S\L) with \; > Xi+1.
From the original result of Anderson [45], the solution to (23)

(25)

is
I:1(k+1) — EI/QWDl/QQ, (26)

where D = diag(dy, .. .,d,,0,...,0), d; = max(\; — 1,0), p
is the number of common factors, and Q is an orthogonal matrix
selected to impose the structure of the set H, which is obtained
as in Section II-A. A consequence of this result is that the value
of HH” that maximizes the log-likelihood is

AC+HD DT — pl/2WDWTRL/2.

b) Step 2. Estimation of G: In this step, the channel-specific
loading matrices, G, for fixed H and 3, are estimated. The
optimization problem at the (k + 1)th iteration is

(P2) maximize L (I:I(}”l), G, ﬁ)(k)) , 27
GeG

which has no closed-form solution. Following the BMM frame-
work, we propose to find a global lower-bound based on the
EM approach and maximize this bound. Interestingly, we will
show that this step amounts to removing the loading matrix for
the common factors H*+1) from the corresponding block in
the diagonal of the sample covariance. Then, apply Anderson’s
result [45] and select the unique loading matrix with the required
structure.

Here is the idea. After marginalization with respect to the
Gaussian factors f, the model for the measurement x is x ~
Nz (0,HH” + GGT + X). The problem is to find joint ML
estimates for {H, G, X} in this model. We might say we started
with the joint distribution for {x, f}, with x normally distributed,
conditioned on f, and f normal. The distribution of f is conjugate
with respect to the conditional distribution of x, so the marginal-
ization of the joint distribution of {x, f} is easy, producing the
second-order normal distribution N7,(0, HH” + GGT + X).
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But the maximization of the likelihood in this second-order
model with respect to G is intractable, even in an alternating
maximization with H and 3 fixed at their most recent estimates.

So, we replace the model N7, (0, HH” + GG 4 X) with
the conditional first-order model N (Hf, GGT + X), treating
f as an unmeasured random effect, and proceed with an EM-
based lower bound in this first-order model, which is maximized
to actually find a G that increases the log-likelihood in the
second-order model x ~ N7 (0, HH” + GG” + X), for fixed
{H,X}.

Now, we will compute the lower bound by only assuming
that H is fixed. We do not consider fixed X as the bound derived
here will be also useful in the next step. Then, let us rewrite the
log-likelihood for fixed H as follows

c (ﬂ<k+1>, G, 2) Z logl (x[n]|G, =) (28)
where [(x[n]|G, ) is the likelihood of x[n] for H fixed to
H*+D | and the equality is up to constant terms that do not
modify the optimization problem. The factors f[n], with f[n]
denoting the nth realization of f, are considered unmeasured ran-
dom effects, or hidden data, so the augmented datais {x[n], f[n]}
[21], [23], [24]. For this choice of the augmented data set, the
lower-bound on L(H*+D G, %) is

c (ﬂ<k+1>, G, 2) >0Q(G,2)+C, 29)
where C is a constant and

Q(G,%)

f: [logl( n)|t[n], G, 3, kD, GO, 5 )} (30)

The conditional distribution of x[n] given f[n] and the parame-
ters of the previous iteration is
x[n]£[n] ~ Ny (H* ¢ n), E) (31

where E = GGT + 3. Then, the expectation in (30) becomes
(up to constant terms)
(k))}

x[n]TETH*D£]n]

E [logl (x[n]|f[ ]G, 2, Bk Gk

= f%x[n]TEflx[n] +

- %bg det (E) — ftr<I:I(k+1)TE711:I(k+1)C[n]), (32)

where
f[n] = E [f[n]|x[n]

= Wx[n], (33)

is the expected value of the factors, which is the minimum mean
squared estimator (MMSE) of f[n] given x[n|, and

Cln] = E [f[n)f[n]" |x[n]]

b (1At TR )

= Wx[n]xT [n]WT

(34)
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is the second order moment of the factors given the observations.
In (33) and (34), the MMSE matrix W is

W — Fk+DT (I:I(kJrl)I:I(kJrl)T n E)‘l 7 (35)

where E is defined in (24). Plugging now (33) and (34) into (30)
yields

N
QG X) = — logdet (E)
N oS A — A
_ Etr {E—l ((I_2H(k+1)w) S + H(Ichl)CH(kH)T)}7
(36)
where
_ 1 X
C= nz::l Cln]
. A 1
= (T+ AETEIRED) L WSWTL (37)

Exploiting the block-diagonal structure of E, Q(G, X) can be
written as

N M
Q(G,X) = -5 ; [log det (G;,G] + %)

+tr<(GiGiT+Ei)_lT7;) . (38)

where T'; is the ith block of the appropriate dimensions in the
diagonal of
T — (1 - 2ﬂ<k+1>w) S+ HMDCHKIT (39
The following lemma allows a further simplification of the
expected log-likelihood function. . X
Lemma 1: The matrices T and P =S — HF+HDHEHDT

are identical.
Proof: Using (26), T can be written as

T = E'/?°WAWTE!?, (40)

where
A = diag (51,...,5,3},,“,...,&), 1)
with §; =min();,1). On the other hand, substituting

HEDHELT — E1/2WDW7TEY2 into P, we obtain
P —S_ ge+DfE+OT
=E'/?W ([\ - D) WTE?
=E'/?WAWTEY? =T (42)

which proves the lemma. |
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From this result, we finally find that the expected log-
likelihood function can be written as

N M
T
Q(G,%) = ) ; [logdet (G:Gf + %))

+ur((GiGF +3) "By |, @)

where

P,—S, ﬂ§k+1)ﬂ§k+1)T (44)

and S; is the sample covariance matrix of the ith channel. The
interesting point from this derivation is that maximizing the
lower bound can be decoupled into M standard FA problems,
that is,

M
Q(G,2)=> Qi(Gi,%)) (45)
=1
where
N T
+u (GG +3) ' Py),  @6)

is identical to (7). To obtain the low-rank component G; that

models the loading matrix for the unique factors, we have to
- (k ~ (k

maximize Q;(G;, 21(» )) for fixed EE ). To this end, we proceed

as before. Defining the whitened version of P; and its EVD as

.- 5]

p, = [s P, {2“)}71/2 - W,A,WT

i |2 47)
where AZ = diag(:\i,l, R S‘i,Li) with 5\,’73' > 5\1'7j+1, the value
of G; that maximizes the lower bound is found from the funda-
mental result of Anderson [45]:

A N 1/2 ~
G = [25’”} w,D%Q.. (48)

Here, ]jz = diag(diyl, NN ,di’p“(), NN 70), with di,j =
max(j\i,j —1,0) and p; is the number of specific factors
in the ith channel. In addition, the orthogonal matrix Q; is
computed like in Step 1 to ensure that GEkH) € G;.

c) Step 3. Estimation of 3: The last step of the proposed
algorithm is to estimate 3 as the solution to the optimization
problem

(Ps) maxizmize L (I:I(]”l), G+, E) . (49)
The problem (Ps) does not admit a closed-form solution,
and neither does the maximization of the lower bound
Qi(égkﬂ), 32;), derived in the previous step. Nevertheless, it
is possible to find yet another lower bound on Qi(égkﬂ), 3),
which admits a closed-form maximizer, as follows.

Defining ®; = 3; ', we may rewrite Qi((A}Z(.kH), 3,;) as

Qi (G, @) = Ru@) ~ Ra(®)),  (50)

where
Rl((}i) =1tr (IOg @1) —tr (qu%) (29
and
Di B B
Ry(®;) = > log(max(f; ;,1)) — max(f; ;,1) +1 (52)

j=1

with log denoting the matrix logarithm and B” being the jth
eigenvalue of @2/2Pi{>2/2. Clearly, R (®;) and Ry(®;) are
both concave functions, but their difference is not concave.
Khamaru and Mazumder in [46] propose a global lower-bound

of Qi(GEkH), <I>i_1) based on the linearization of Ry (®;) using

the subgradient at 25’“), which yields

Qi <G§k+l), @;1) =tr(log®;) — tr (P;®;) + tr (A;P;),
(53)
where the subgradient with respect to ®; is

O (I = A e 2 P
with

Ei = diag(gi’h...,Ei’pi,o,...,O),
and & ; = max(1 — 1/X; ;,0). Thus, we have that

r (ﬁ(m)’ GO+, 2)

(55)

>0 (G<k+1>, 2) +C>0 (G(k’“), z) L0, (56)

where
M K
Q (G(’““), 2) -3 Q& (GE’““), @;1) 5D
i=1
Finally, the maximizer of (53) is given by

(58)

After some straightforward manipulations, we may rewrite the
subgradient in (54) as

A, = diag (G(k+1)é(k+1)T)

(59
which yields

$(k+1) _ diag (Pi _ G(kﬂ)é(_kH)T) _
or, equivalently,

£+ — diag (s _ kD DT _ G(k+1)@(k+1)T) ,
(61)
The non-negativity of the elements in the diagonal of 3 has not
been imposed. However, taking into account (48), it is easy to
show that the elements of 3J; are indeed non-negative.

(60)

C. Initialization and Convergence

The algorithm for ML multi-channel factor analysis, or ML-
MFA, is initialized at 0 — I, and GEO) = 0r,xp,, TEspec-
tively. A smarter initialization of 32, which could achieve faster
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Algorithm 1: ML-MFA Algorithm.

1: Initialize: k = 0,2 =1, and G = 0, .,,.

2: repeat

3: Step 1: Estimate H(*+1D) according to (26)

4: Cancel out the effect of the common factors using
(44)

5: Step 2: Estimate ngﬂ) following (48)

6: Step 3: Estimate 25’“1) as in (60)

7 k=k+1

8: until convergence

convergence for small signal-to-noise ratios [4], is 30 =
diag(S). A summary of the ML-MFA algorithm is presented
in Algorithm 1.

The following theorem proves the convergence of the ML-
MFA algorithm to a stationary point of (21).

Theorem 1: Denote by

{@(k)} - {ﬂ(k)’ G®), 2(’9)} (62)

the sequence of iterates generated by Algorithm 1. Then, assum-
ing that the problem is identifiable and that the solution at each
iteration has positive noise variances (i.e., the so-called Hey-
wood cases [4] are excluded), the sequence {(;)(k)} converges
to a stationary point O of 210).

Proof: See Appendix A. |

IV. NUMERICAL RESULTS

A. Demonstrating Convergence

In the first example, we study the convergence of Algorithm 1
by considering M = 3 channels of dimensions L1 = 20, Ly =
15, and L3 = 10. The number of observations is N = 100, and
the number of common and unique factors are, respectively,
p=2 and p; =4,py = 3, and p3 = 2. Moreover, the power
ratio explained by the common, unique, and noise components
for the ith channel with respect to the total power are given by

ne = w(H;H]) /u(R;) = 0.3, (63)

ns = tr(G;GI) /tr(R;) = 0.3, (64)

= tr(3;)/tr(R;) = 0.4, (65)
where R; is the covariance matrix of the ith channel:

R, =HH] + G,;G] +%,. (66)

Note that, for simplicity, the power ratios for all channels are
identical, although it is straightforward to extend the model to
unequal power ratios.

The results for this example are shown in Fig. 2, where the con-
vergence curves for 15 runs of the proposed method are plotted.
The loading and covariance matrices are randomly generated.
That is, the model is different in each run. Consequently the
value of achieved log-likelihood varies from run-to-run.
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B. Estimating the Common and Unique Factors

In the second example, the identification of the composite
covariance matrix for all channels is used in uncoupled MMSE
estimates of common and unique factors:

fin] = AR 'x[n], (67)

fifn] = GIR;"xi[n], (68)
where R, is the ith block in the diagonal of R. The results
are shown in Fig. 3 for an experiment with p = p; = 1 factors,
which are now AR(1) signals,? and N = 1000. The remaining
parameters of the measurement model are those in the previous
example. As can be seen in Fig. 3, the estimated factors in this
scenario are nearly identical to the true factors.

C. Mean-Squared Error of the Estimated Covariance Model

The next example compares the performance of the MFA
method, a naive method that applies a single-channel FA

>The temporal correlation induced by the AR(1) model is only used for
visualization purposes and not exploited in the estimation algorithm, which still
considers independent and identically distributed observations.
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Fig. 4. NMSE in the estimate of R for the MFA, block-sparse FA, CCA+FA,

and GFA models.

algorithm whose solution for H is projected afterwards onto
the set of matrices with the structure in Fig. 1, and a two-step
method that consists on first applying MAXVAR-CCA [43] to
estimate the common factors, then cancel out their effect using
(44), and finally applying single-channel FA to each P;. This
combined CCA+FA approach may be interpreted as a variation
of the proposed ML-MFA method, where only one iteration of
Step 1 is taken. Moreover, we also include in the comparison the
group factor analysis (GFA) model proposed in [31]. GFA learns
a structured sparse FA model so that the factor loading matrix
is group-wise sparse. Sparsity in GFA is enforced by assuming
independent gamma distributions as the precision parameter of
the prior distribution for the elements of the loading matrix,
and approximate inference is performed using the mean-field
variational approximation. A final point to mention is that, while
MFA, CCA+FA, and the naive method need an estimate of the
number of common and unique factors, GFA only needs to know
the total number of factors, K, and the variational optimization
procedure finds the most adequate group-wise sparse structure
for the multi-channel loading matrix. As a figure of merit, we
use the normalized mean-squared error in the estimate of R,
which is defined as

HR—R
IR|[%

‘2

NMSE = E L

)

estimated by averaging 1000 Monte Carlo trials for each value
of N.

We generate data according to the proposed MFA model
with M = 4 channels of dimensions L1 = 6, L, = 8, L3 = 10,
and Ly = 12, p = 2 common factors and p; = 1 specific factor
in each channel, and the proportion of variance explained by
the common factors, the specific factors, and the noise are,
respectively,

n.=0.1, ns=0.5, n,=04. (69)

Fig. 4 shows the NMSE for the MFA, CCA+FA, and the GFA
models as a function of the sample size NV, as well as for two

versions of the proposed naive method. In the first one, labeled as
sparse-FA I, the projection is performed after convergence of the
FA algorithm, whereas in the second one, labeled as sparse-FA
11, the projection is performed after each iteration. For the MFA,
block-sparse FA, and CCA+FA, we use the correct number of
common and unique factors, while for the GFA we use the cor-
rect number of total factors K = p + p; + p2 + p3 + ps = 6.
AsFig. 4 shows, the gain obtained by properly enforcing the right
sparsity structure in the composite loading matrix (cf. Fig. 1)
increases with the number of samples. Moreover, imposing
this structure using the naive approach results in a very poor
performance. Thus, we will discard this method in the next
experiment.

This is admittedly a rigged experiment, as the measurements
are generated from a model matched to the MFA structure as-
suming that the exact number of common factors, p, and the exact
number of unique factors, p;, are known. In the next example
we evaluate the NMSE performance of MFA, CCA+FA, and
GFA against mismatched models using the parameters of the last
experiment. Let us recall that the true number of common factors
is p = 2, and the unique factors for the 4 channels are p; = 1.
Fig. 5a shows that the performance of MFA is rather insensitive
to an overestimation of either the number of common or unique
factors. However, MFA is sensitive to underestimation of the
number of unique factors. The same behavior can be observed for
the CCA+FA model as can be seen in Fig. 5b. Finally, the GFA
model experiences also a similar behavior, as Fig. Sc shows: it
is robust against an overestimation of the total number of factors
present in the true model, but sensitive to under-estimation of
the number of factors. In fact, this example suggests that GFA
is more sensitive to model order underestimation than is MFA
or CCA+FA.

So far, we have not commented on the computational com-
plexity of the MFA, CCA+FA, and GFA models. Here, the com-
putational complexity is measured only by the most expensive
operations (matrix factorizations and inverses). First, we will
compute the computational complexity of the MFA algorithm
per iteration. Step 1 of the algorithm requires the computation
of E'/2 and E1/2, which can be computed using the EVD
with a cost of 217, O(n?), where O(-) is the Landau’s big O
notation. Moreover, in Step 1, the EVD of Sis computed, which
has a complexity of O(n?), as well as the LQ decomposition of
B, which has a complexity of O(p?). In Step 2, after we have
removed the effect of the common factors (with a negligible
complexity), it is necessary to compute the EVDs of P, i=
1,..., M, which amounts to a complexity of Zi\il O(n?) and
the LQ decompositions of the corresponding blocks with a
complexity of Zivil O(p?). Moreover, the complexity of Step 3
can be neglected. To sum up, the complexity per iteration of the
MFA is

M M
Comp.ypa = O(n®) + O(p®) + Z O(n?) + Z O(p?).
=1 i=1

(70)

The complexity of the CCA+FA approach can be obtained
similarly. Keep in mind that, as we have pointed out before, this
method can be seen as a specialization of our algorithm where
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Fig. 5. Robustness of MFA, CCA+FA and GFA against mismatched models.

only one iteration of Step | is taken. Thus, the computation
complexity is O(n?) + M, O(n?) due to CCA and then that
of FA, which is >>, O(n?) + "M, O(p?) per iteration. Ad-
mittedly, the complexity of the MFA algorithm is higher due
to the multiple iterations of Step 1. However, as the results
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have shown, this higher complexity can be worth to improve
the performance.

The most expensive operations performed by the GFA model
in each of its iterations are the updates of its latent variables
and projection matrices. These require the inversion of M + 1
matrices of size K x K, where M is the number of channels
and K =p+ ), p; is the total number of factors. Thus, the
complexity per iteration is (M + 1)O(K?). Since the involved
matrices are fairly small, these operations are rather inexpensive
and performing a single iterate is relatively fast. Nevertheless,
the convergence of GFA in Figs. 4 and 5c required several
hundreds up to thousands of iterations, which is up to two orders
of magnitude more than MFA. The GFA implementation of [31]
also includes a variational approximation scheme to solve the
rotational ambiguity of the solution, which adds an important
computational burden to each iteration. Since this operation
is not required to estimate the covariance matrix, it was not
performed in our experiments.

D. Application to Passive Radar

A passive radar is equipped with both surveillance and refer-
ence antenna arrays [47]. The detection problem is to test H; :
target present vs H, : target absent:

w, . [l = it 4 Gt
x2[n| = Haof[n] + Gafa[n] + ea[n], 1)
o - xl[n] = Gify [’FL} + el[n],
Xg[n] = Hgf[n] + Ggfg[’fl] + eg[ }

Here, x1[n] and xs[n| are respectively the surveillance and
reference observations, f[n] is the unknown signal transmitted
by the opportunistic illuminators, and H; and Hs correspond to
the channels between the illuminators and the surveillance and
reference antennas. The factor f[n] is common when there is a
target present to reflect the direct path signal, and the scanning
surveillance channel comes into synchrony with the reference
channel. The factors fj[n] and f3[n], and their channels G
and Go, model the local interference at the surveillance and
reference antenna arrays. Local interference in the surveillance
channel models the direct path signal to the surveillance channel,
and local interference in the reference channel allows for the
modeling of multipath from the transmitter. We assume that the
number of common and unique factors is known, which is not
unrealistic for this application.

In [22], the model in (71) has been studied under different
assumptions on the composite covariance matrix for the surveil-
lance and direct channels. One of these assumptions is that
there is no channel specific interference in the surveillance and
reference channels, and that the covariances for the noises e
and ey are positive definite, but not diagonal. In this case, [22]
derived the generalized likelihood ratio test (GLRT):

p 1

V)=l y=m 20
i=1 ?

where 7) is a properly selected threshold and k; is the ith canoni-

cal correlation between the surveillance and reference channels.



RAMIREZ et al.: MULTI-CHANNEL FACTOR ANALYSIS WITH COMMON AND UNIQUE FACTORS 123

109 T T T T T T E
1071 E
£ 102¢ E
1072 ¢ E
E — T(x[1],...,x[N]) ;
|| = (x[1],...,x[N]) ]

10—4 I I I I 1 1

-20 -19 -18 —-17 —-16 -15 —-14 -13
SNIR (dB)

Fig. 6. Probability of missed detection (p,,) for varying SINR and fixed
probability of false alarm p ¢, = 1073,

That is, k; is the 4th singular value of C = s;f/zslgs;;/z,

with S;; the ijth block of S. The statistic may be termed a
coherence statistic, as C is a coherence matrix. The statistic

1—1/T(x[1],...,x[N]) makes the coherence interpretation
more clear:
1 P
1- =1-]]-%&). 73
ey R | Gt A

Let us compare the GLRT in (72) with the GLRT statistic for
the problem (71)

Hy HoG 5
.,X[N]) = =22

X[N]) max_1(Hy, G, )

2,

l(H17H2>G7E) Hy
2. (74)
Ho

Here [(+) is the Gaussian likelihood function. The maximization
in the numerator is identical to that in Section IIT and we can
therefore solve it using the ML-MFA algorithm. Under H, the
measurement model is

x1[n] = Gifi[n] + e1[n],

x2[n] = Hof[n] + Gofa[n] + ez[n], (75)

which is equivalent to two (independent) FA problems. Thus,
the computation of the compressed likelihood under the null
hypothesis #y may be carried out by solving two FA problems
as in Section II.

To evaluate the performance of the statistics
9 (x[1],...,x[N]) and T(x[1],...,x[N]), let us construct
the following experiment. The noise covariance matrices are
generated as X; = diag(07,,...,07 ) with o7, uniformly
distributed between O and 1, and the elements of the common
and uncommon loading matrices are generated as independent
complex normals with zero mean and unit variance; the
common loading matrices are scaled to achieve the desired
signal-to-interference-plus-noise ratio (SINR). The surveillance
and reference channels are both equipped with L; =10
antennas, the number of antennas at the illuminator is p = 3,
the interferers have both p, = 1 antenna, and the number of

available samples is N = 200. The results for this scenario are
shown in Fig. 6. This figure shows the probability of missed
detection (py;,) for fixed probability of false alarm py, = 1073
and varying SINR, which is defined as

(76)

HH
SINR(dB)lOlogw( tr(HH,") )

As we can see, the proposed detector in (74) outperforms the
detector T'(x[1], ..., x[N]) in (72) because it exploits the addi-
tional structure induced by the low-rank interferers, which is to
say the statistic 4(x[1],...,x[N]) is matched to the measure-
ment model and the statistic T'(x[1], . ..,x[N]) is mismatched.

V. CONCLUSION

This paper reports an extension to factor analysis (FA) for sev-
eral MIMO channels that share factors and also contain unique
factors. One important application of these results is to the
problem of target detection in passive radar. Compared to other
multi-channel generalizations of FA, such as inter-battery FA,
the model proposed in this paper allows for shared and unique
factors in each channel. The net of this model is to produce a
multivariate Gaussian distribution for the set of MIMO channels
in which a composite covariance matrix is structured in a very
special way. The maximum likelihood problem is to identify this
structured covariance matrix from a sequence of multi-channel
measurements. Since there is no closed-form solution, we report
an iterative algorithm, consisting of a sequence of three steps,
which are derived using the block minorization-maximization
framework. We prove the convergence of the algorithm to a
stationary point and demonstrate its performance with numerical
experiments on illustrative problems. In the theory developed
here, the number of factors must be known for each channel,
suggesting further refinements for order determinations in each
channel.

APPENDIX A
PROOF OF THEOREM 1

The proposed algorithm is a block minorization-
maximization (BMM) algorithm [38], also known as block
successive minimization algorithm [39], with a cyclic selection
rule. BMM algorithms are a generalization of the well-known
block coordinate ascend methods [42], where instead of
maximizing the objective function with respect to each block
of variables, global lower bounds are maximized. This allows
for more flexible algorithms that still guarantee convergence
to a stationary point. Concretely, Razaviyayn, Hong, and Luo
established in [39] the conditions under which BMM algorithms
converge to a stationary points. Hence, the objective of this
appendix is to show that these conditions are met for our
particular problem. The conditions to ensure convergence of
BMM algorithms are [39]:

C1) Each block of variables belongs to a convex set.

C2) The maximizer of the global lower bounds is unique for

at least 2 blocks.

C3) The global lower bounds satisfy the regularity conditions

given by [39, Assumption 2].



124

C4) The level set, defined as

X = {H,G,2|L(H,G,X) > LH, G xO)},
(7)

is compact.
C5) The log-likelihood is regular at any point in X'(?).
Before proceeding, let us note that Algorithm 1 is a special
case of a BMM algorithm since the estimate of H is obtained
by directly maximizing the log-likelihood (i.e., the original cost
function) and no lower-bound is required. On the other hand,
the estimates for G and 3 are obtained by maximizing the

global lower-bounds Q(G, fl(k)) + Cand Q(GH+D) ) + C,
respectively.

The matrices H € H, G = blkdiag[G1,...,G], where
G; € G;,and X = blkdiag[X1, ..., X /], where 3; is a diago-
nal matrix with positive elements, clearly belong to convex sets.
Therefore, the condition (C1) is satisfied. Moreover, as we have
seen in Section III, the maximizer for X of the lower bound is
unique, and the maximizers for H and G of the lower bounds
are also unique when the lower triangular structure in the upper
blocks of H and G is imposed, which can be safely done due to
the invariances of factor analysis. Thus, condition (C2) is also
met since all the maximizers of the lower bounds are unique.

Since the Gaussian log-likelihood is a smooth function, us-
ing [39, Proposition 2], it is easy to check that the regularity

conditions of (C3) are satisfied for Q(G, ﬁ](k)) + C. Similarly,

and taking into account that Q(G*+1) 3) 4 ' was obtained

~ (k
by linearizing Q(G, ol )) + C, the regularity conditions are

also satisfied for this lower bound.

To prove that the level set is compact, we shall use the Heine-
Borel theorem, which states that a subset S of R® (with the
usual metric) is compact if and only if it is closed and bounded.
In our problem, the solutions {H, G, X} belong to a subset of
REP+2; Livit L and therefore the Heine-Borel theorem applies.
First, we study the closedness of the level set. Any point in X' (?)
satisfies

LH? GO =ON < £(H,G,3) < L(H*,G*, %),
(78)
where {H*, G*, ¥*} is the global maximum. It is easy to show
that the log-likelihood at the global maximum is bounded above
by the log-likelihood for the unstructured estimate of R, i.e.,
R = S, given by
—logdet(S) — L, (79)
which is finite with probability one for N > L, implying that
the set defined in (78) is closed. Then, since the log-likelihood
is continuous for proper solutions (solutions with positive noise
variances), the inverse image of the set in (78) must be closed.
That is, the level set is closed.
To study the boundedness of X (O), we shall decompose the
covariance matrix as

R =HH” + GG + X = uR, (80)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

with a positive and tr(R) = tr(R(%)). Here,

R=HH" + GGT + 3, (81)
with
~ ~ ]\/[ ~ ~
w(R) = [H|2 + > G2 + u(D) =u(R©).  (82)
i=1

Therefore, the set

M
IH[? + ) [1Gi* + () = u(R©) } , (83)
1=1

is bounded since tr(R(?)) is finite, which implies that X'(*) is
bounded if a is bounded. Thus, we need to show that the values
of a fulfilling

. 1 -
—logdet(R) — nloga — —tr(R™'8)
a

> —logdet(R©) — tr([RV]718), (84)

are finite. Since we consider identifiable systems and proper
solutions, we have that 3 = 0 and therefore R = 0. Now, if we
can find a finite a that fulfills

tr(S) - log det(R(9) +-tr([R(D]1S) —nlog pmin

log a+— < )
N Pmin@ n
(85)

where pmin > 0 is the smallest eigenvalue of R, the values
of a fulfilling (84) are also finite. For a > tr(S)/npmin, the
function on the left-hand side of (85) is increasing, and there
must therefore exist a finite ag such that

B

C
logag + — = —,
naop n

(86)

which proves that a is bounded for any point in X'(?). Hence,
the level set is bounded. Then, since the level set is closed and
bounded, it is compact.

Finally, we study the regularity of the log-likelihood function
according to the definition in [39]. Concretely, the log-likelihood
is regular at a point {H, G, 3} in its domain if

(H,G,%,H,G,X) <0, (87)

such that /(H,G,%,H,0,0) <0, /(H,G,%,0,G,0) <0,
and ((H, G, X,0,0,%) < 0. Here, the directional derivative in
direction {H, G, X} is defined as

(H,G, 2, H,G,X)
LH+7H,G+7G, X +73%) - L(H,G,X)

= lim inf .
7—0 T

(88)

Defining
R =HH" + GG + 3, (89)

and
R = r?HA” + 7*GGT + tHHA” + 7HH”

+7GGT +7GGT + X, (90)
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the first term in the numerator of (88) may be rewritten as
LH+™H,G+7G,Z+7%)
= —logdet(R +R) — tr((R + R)™'S). 1)

Since 7 — 0, which implies R — 0, we may substitute the
functions in (91) by their first-order approximations, which
yields

w(RISR™! — R VR)

(H,G,X,H,G,X) :limiglf )
T—r

92)

Now, taking the limit and noticing that the trace is a continuous

function we find that

(H,G,%,H,G.2) =20 (H' (R 'SR'-R "H)
+2ur (G"(R'SR'-R)G)
+u(ERTSRTT-RM)). (93)

Each of the three terms in the right-hand side of (93)
corresponds to /(H, G, X, H,0,0), /(H,G,X,0,G,0), and
{(H,G,X,0,0,X), respectively. Thus, if all three terms are
negative, (87) is fulfilled and, therefore, the log-likelihood is
regular.

To conclude, the proof follows since conditions (C1)—(C5)
are satisfied.
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