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Abstract—In this paper, we address the problem of subspace
averaging, with special emphasis placed on the question of esti-
mating the dimension of the average. The results suggest that the
enumeration of sources in a multi-sensor array, which is a prob-
lem of estimating the dimension of the array manifold, and as a
consequence the number of radiating sources, may be cast as a
problem of averaging subspaces. This point of view stands in con-
trast to conventional approaches, which cast the problem as one
of identifiying covariance models in a factor model. We present
a robust formulation of the proposed order fitting rule based on
majorization–minimization algorithms. A key element of the pro-
posed method is to construct a bootstrap procedure, based on a
newly proposed discrete distribution on the manifold of projection
matrices, for stochastically generating subspaces from a function of
experimentally determined eigenvalues. In this way, the proposed
subspace averaging (SA) technique determines the order based on
the eigenvalues of an average projection matrix, rather than on
the likelihood of a covariance model, penalized by functions of the
model order. By means of simulation examples, we show that the
proposed SA criterion is especially effective in high-dimensional
scenarios with low sample support.

Index Terms—Array processing, dimension, Grassmann mani-
fold, order estimation, source enumeration, subspace averaging.
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I. INTRODUCTION

IN MANY applications of statistical signal processing, high-
dimensional data exhibits a low dimensional structure that

admits a subspace representation. In pattern recognition and ma-
chine learning, for instance, discriminative features are typically
obtained after a principal component analysis (PCA) stage that
selects a subspace to explain a large fraction of the variance in
the original data [1]. In computer vision, the set of images under
different illuminations can be represented by a low-dimensional
subspace [2]. And subspaces appear also as invariant represen-
tations of signals geometrically deformed under a set of affine
transformations [3]. There are many more applications where
low-dimensional subspaces capture the intrinsic geometry of the
problem, ranging from array processing [4], motion segmen-
tation [5], subspace clustering [6], spectrum sensing for cog-
nitive radio [7], or noncoherent multiple-input multiple-output
(MIMO) wireless communications [8], [9].

When input data are modeled as subspaces, possibly of dif-
ferent dimensions, a fundamental problem is to compute an av-
erage or central subspace and, more importantly, to determine
the dimension of the average. When all subspaces have the same
dimension, they are formally represented as points on the Grass-
mann manifold. Geodesic, or intrinsic, distances on the Grass-
mannian are measured by the arc length (l2-norm of the vector
of principal angles), and the average subspace according to this
canonical distance metric is the Riemannian center of mass, also
known as the Karcher mean [10]. The Karcher mean is typically
found by iterative algorithms that map the subspaces to and from
the tangent plane at a given point (using Exp and Log maps),
which make them computationally costly [11], and in fact not
computable if some subspaces lie outside the injectivity radius
of a provisional average, in which case the Log map is undefined.
Another drawback of the intrinsic distance metric is that a unique
optimal Karcher mean is not always guaranteed to exist [12].

As an alternative to the intrinsic mean of the manifold, Srivas-
tava and Klassen proposed the extrinsic mean in [13], which uses
a chordal distance metric in the ambient vector space defined as
the squared Frobenius norm of the difference between projec-
tion matrices. Unlike the intrinsic mean, the extrinsic mean of a
collection of subspaces is always unique, it is easy to compute,
and can be used for subspaces that have different dimensions
and therefore live in a union of Grassmannians. For these rea-
sons, in this paper we focus on the extrinsic distance to compare
subspaces that might not live in the same manifold.
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We address the problem of determining the optimal order of
the low-dimension average subspace that minimizes an extrin-
sic distance measure between subspaces and their average. The
solution to this problem provides the simple order fitting rule
derived in [14] for minimizing the extrinsic mean-squared error
between a collection of subspaces and their average. The order
fitting rule uses a threshold test on the eigenvalues of the av-
erage projection matrix, and thus it is free of penalty terms or
other tuning parameters commonly used by other model order
estimation techniques. The proposed rule appears to be partic-
ularly well suited to problems involving high-dimensional data
and low sample support, such as the determination of the number
of sources with a large array of sensors [15]–[17]: the so-called
source enumeration problem. In this paper we generalize this
result by showing that it may also be applied to minimization
of the mean-squared error between subspaces and their average,
even when the extrinsic distance between two subspaces is re-
placed by a monotone function of the distance. This makes the
resulting order fitting rule robust to outliers in the sequence of
projections to be averaged.

In multi-sensor signal processing, temporal snapshots are typ-
ically used to estimate a second-order spatial covariance matrix.
The eigenvalues of this sample covariance matrix are used for
detection and localization, using methods that are inspired vari-
ations on factor analysis. But the use of these eigenvalues for
source enumeration is fraught with difficulties, as they scale
with source powers and background noise levels, and this fact
conflicts with the fact that the dimension of an array manifold
is invariant to scale. So the fundamental problem is to extract
from a sample covariance matrix a scale invariant subspace. In
summary, our approach to find this subspace is this. We replace
a large sensor array by an overlapping sequence of subarrays, as
inspired by [18], [19], and extract a collection of subspaces from
the measurements made in each such subarray. These subspaces
are then averaged, and from this average the dimension of the ar-
ray manifold is determined. We propose a method for extracting
subspaces based on a bootstrap sampling for subspaces drawn
from a distribution determined by eigenvalues. This method is
quite different in philosophy from previously published meth-
ods that are based on asymptotic formulas for the distribution of
the eigenvalues of the sample covariance matrix.

The order fitting rule for subspace averaging (SA) was first
published in [14], and an unrefined application to source enu-
meration was presented in [20]. In this paper, we extend and
refine these papers to provide a common framework for SA and
its application to source enumeration. The main contributions of
this paper may be summarized as follows:
� We consider continuous and discrete distributions on the

manifold of projection matrices as underlying distributions
from which the measured collection of subspaces is a ran-
dom draw. From this standpoint, the eigenvalues of the
average projection matrix admit a probabilistic interpre-
tation that enables a better understanding of the proposed
order estimation rule.

� We propose a robust formulation of the problem to ac-
count for outliers within the set of measured subspaces. The
standard extrinsic mean distance is replaced by a smooth

concave function such as the l1 norm or the Huber loss
function that limits the effect of subspaces far away from
the average. A majorization-minimization (MM) algorithm
[21] is then used to find the minimizer of this robust dis-
tance measure, which, in turn, provides a robust order fit-
ting rule.

� The application of SA techniques to source enumeration
in [20] is enhanced by including a sampling mechanism
to generate random subspaces based on the eigenstructure
of the sample covariance matrix. When exploited jointly
with the shift invariance property of uniform linear arrays
(ULAs), this random sampling scheme enhances the per-
formance of SA in high-resolution scenarios in compari-
son to the preliminary results presented in [20]. Further,
the method is proven to provide a consistent estimate of
the number of sources as the number of samples or the
signal-to-noise-ratio grow.

The structure of the paper is as follows. In Section II we de-
rive the order estimation rule for the average subspace using an
extrinsic distance measure. As reported in [12], [14], an average
of projection matrices, not itself a projection matrix, is the key
quantity summarizing all information needed to solve this prob-
lem. We also present in this section a robust version of the SA
problem and solve it using MM algorithms. Sec. III reviews uni-
form and non-uniform distributions on the Grassmannian, and
proposes a new discrete distribution motivated by interpreting
the eigenvalues of the average projection matrix as probabilities.
The application of the SA technique to source enumeration in
large uniform linear arrays is discussed in detail in Section IV.
Section V evaluates the performance of the order fitting rule
through numerical simulations, paying special attention to the
application to source enumeration. Finally, the main conclusions
are summarized in Section VI.

Notation: In this paper we use 〈A〉 to denote a subspace of
the complex vector space Cn spanned by the unitary frame A,
and PA = AAH denotes the orthogonal projection onto 〈A〉.
The superscripts (·)T and (·)H denote transpose and Hermitian,
respectively. The trace and Frobenius norm of a matrix B will
be denoted, respectively, as tr(B) and ||B||F . diag(a) denotes a
diagonal matrix whose diagonal is a, and In denotes the identity
matrix of sizen. CN (0, 1) denotes a complex Gaussian distribu-
tion with zero mean and unit variance, x ∼ CNn(0,R) denotes
a complex Gaussian vector in Cn with zero mean and covariance
R. S(q, n) denotes the complex Stiefel manifold of orthonormal
q-frames in Cn, G(q, n) denotes the complex Grassmann man-
ifold of q-dimensional linear subspaces of the n-dimensional
complex vector space Cn, and P (q, n) denotes the set of all pro-
jection matrices of rank q.

II. ORDER ESTIMATION VIA SUBSPACE AVERAGING

A. Distances Between Subpaces

Let us consider two subspaces 〈V〉 ∈ G(qV , n) and 〈U〉 ∈
G(qU , n). Let V ∈ Cn×qV be a matrix whose columns form a
unitary basis for 〈V〉. Then VHV = IqV , and PV = VVH

is the idempotent orthogonal projection onto 〈V〉. Notice that
PV is a unique representation of 〈V〉, whereas V is not
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unique, because if G is an arbitrary unitary qV × qV matrix,
then VG will be another representation of 〈V〉 with orthonor-
mal columns. In a similar way, we define U and PU for the
subspace 〈U〉.

To measure the distance between two subspaces we need the
concept of principal angles, which is introduced in the following
definition [22].

Definition 2.1: Let 〈V〉 and 〈U〉 be subspaces of Cn whose
dimensionality satisfy dim (〈V〉) = qV ≥ dim (〈U〉) = qU ≥
1. The principal angles θ1, . . . , θqU ∈ [0, π/2] between 〈V〉 and
〈U〉 are defined recursively by

cos(θk) = max
u∈〈U〉

max
v∈〈V〉

uHv = uT
k vk

subject to ||u|| = ||v|| = 1,

uHui = 0, i = 1, . . . , k − 1,

vHvi = 0, i = 1, . . . , k − 1,

for k = 1, 2, . . . , qU .
Assume thatU andV are unitary bases for the two subspaces.

Then the singular values of UHV are (cos(θ1), . . . , cos(θqU ))
[23]. The principal angles induce several distance metrics, from
which the most widely used are the geodesic or intrinsic distance
[10], [24]

dgeo (〈U〉 , 〈V〉)2 =

qU∑

r=1

θ2r ,

and the extrinsic distance, which is given by the Frobenius norm
of the difference between the respective projection matrices
[12], [13],

d (〈U〉 , 〈V〉)2 =
1

2
‖PU −PV‖2F

=
1

2

(
qV + qU − 2

qU∑

r=1

cos(θr)
2

)

=
|qV − qU |

2
+

qU∑

r=1

sin(θr)
2. (1)

The second term in the right hand side of Eq. (1) measures
the chordal distance defined by the principal angles, whereas
the first term accounts for projection matrices of different
ranks.

There are arguments in favor of the extrinsic distance (1),
among them, its uniqueness and its computational simplicity in
contrast to the intrinsic distance that needs to compute the sin-
gular values of VHU. Also, the extrinsic distance is related to
the squared error in resolving the standard basis for the ambi-
ent space, {ei}ni=1, onto the subspace 〈V〉 as opposed to the
subspace 〈U〉,

n∑

i=1

eTi (PU −PV)H(PU −PV)ei

= tr
(
(PU −PV)H(PU −PV)

)

= ‖PU −PV‖2F = 2d (〈U〉 , 〈V〉)2 .

B. Order Selection Rule [14], [25]

Let us consider a collection of measured subspaces
{〈Vr〉}Rr=1 ofCn, each with respective dimensiondim(〈Vr〉) =
qr < n. To simplify the notation, we denote the orthogonal pro-
jection matrix onto the rth subspace as Pr. Each subspace 〈Vr〉
is a point on the Grassmann manifold G(qr, n), and the col-
lection of subspaces lives on a disjoint union of Grasmannians.
Without loss of generality, the dimension of the union of all
subspaces is assumed to be the ambient space dimension n.

Using the extrinsic distance metric between subspaces, an
order estimation criterion for the central subspace that “best
approximates” the collection is

(s∗,P∗
s) = argmin

s∈{0,1,...,n}
P∈P(s,n)

1

2R

R∑

r=1

‖P−Pr‖2F , (2)

where P (s, n) denotes the set of all idempotent projection matri-
ces of rank s. For completeness, we also accept solutions P = 0
with rank s = 0, meaning that there is no central “signal sub-
space” shared by the collection of input subspaces.

Expanding the cost function in (2) we obtain the equivalent
problem

min
s∈{0,1,...,n}
P∈P(s,n)

1

2
tr
(
P(I− 2P) +P

)
, (3)

where P is an average of orthogonal projection matrices

P =
1

R

R∑

r=1

Pr, (4)

with compact eigendecomposition P = FKFH , where K =
diag (k1, . . . , kn) with 1 ≥ k1 ≥ k2 ≥ · · · ≥ kn.

Now, discarding constant terms and writing the projection ma-
trix as P = UUH , where U is a unitary n× s matrix, problem
(3) can be rewritten as

min
U∈S(s,n)

tr
(
UH(I− 2P)U

)
,

where S(s, n) denotes the complex Stiefel manifold of orthonor-
mal s-frames in Cn. Hence, the optimal order s∗ is the number
of negative eigenvalues of the matrix

S = I− 2P,

or, equivalently, the number of eigenvalues of P larger than 1/2,
which is the order fitting rule proposed in [14]. The proposed
rule can be written alternatively as

s∗ = argmin
s∈{0,1,...,n}

s∑

i=1

(1− ki) +
n∑

s+1

ki.

A similar rule was developed in [25] for the problem of design-
ing optimum time-frequency subspaces with a specified time-
frequency pass region.

Once the optimal order s∗ is known, a basis for the aver-
age subspace can be obtained as the solution of the following
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optimization problem

max
U∈S(s∗,n)

tr
(
UHFKFHU

)
,

whose solution is given by any unitary matrix whose column
space is the same as the subspace spanned by the s∗ principal
eigenvectors of F

U∗ = (f1, f2, . . . , fs∗) = Fs∗ ,

and P∗ = U∗(U∗)H . So the average subspace is constructed by
quantizing the eigenvalues of the average projection matrix at
0 or 1.

C. Properties of the Average Projection Matrix

The average of projection matrices in (4) is not a projection
matrix itself, and therefore is not idempotent. However, it has
the following properties:

1) It is symmetric and positive semidefinite.
2) Its eigenvalues are real and satisfy 0 ≤ ki ≤ 1.

1) is trivially proved by noticing that P is an average of sym-
metric and positive semidefinite projection matrices. To prove
2) let us take without loss of generality the ith eigenvalue-
eigenvector pair (ki, fi), then we have

ki = fHi Pfi =
1

R

R∑

r=1

fHi Prfi

(a)
=

1

R

R∑

r=1

fHi P2
rfi =

1

R

R∑

r=1

||Prfi||2 ≤ 1,

where (a) holds because all Pr are idempotent, and the inequal-
ity follows from the fact that each term ||Prfi||2 is the squared
norm of the projection of a unit norm vector, fi, onto the sub-
space 〈Vr〉 and therefore ||Prfi||2 ≤ 1 with equality only if the
eigenvector belongs to the subspace.

Assuming that Vr = [vr1, . . . ,vrqr ] is a unitary basis for the
rth subspace, the eigenvalues of the average projection matrix
can be further expressed as

ki =
1

R

R∑

r=1

qj∑

j=1

||vH
rjfi||2,

and hence they can be interpreted as the squared norm of the av-
erage projection along the direction fi. It is important to remark,
however, that the eigenvalues of P are invariant to a common
change in the basis of all subspaces. That is, we can apply an
arbitrary change of basis V′

r = VrQ for r = 1, . . . , R with Q
unitary, and the eigenvalues ki do not change.

D. Robust Version

In some applications there is a need to account for outliers
within our collection of measured or extracted subspaces. To
this end, we discuss in this section a robust formulation of the
proposed order fitting rule based on majorization-minimization
(MM) algorithms [21].

The simplest robust formulation of Problem (2) is

min
s∈{0,1,...,n}
P∈P(s,n)

1

R

R∑

r=1

ρ
(
d2r (P)

)
(5)

where

d2r (P) =
1

2
‖P−Pr‖2F

and ρ (·) is a smooth concave increasing function that saturates
so that outliers or subspaces far away from the average have a
limited effect. Examples of robust functions are [26]:
� �p-norm:

ρ (t) = tp/2 (6)

where 0 < p ≤ 2 with the nonrobust �2-norm formulation
recovered for p = 2.

� Huber: for T > 0,

ρH (t) =

{
t/
√
T t ≤ T,

√
t t > T.

(7)

For T = 0 we obtain the median estimator ρH(t) =
√
t.

� Log-loss:

ρLL (t) = θ ln (θ + t) ,

where θ ≥ 1.
� Logistic:

ρL (t) =
1

1 + e−t
.

� Geman-McClure estimator [27], [28]: for θ > 0,

ρGM (t) =
t

θ + t
.

The idea of the MM algorithm [21] is, at each iteration, to find
a majorizer of the objective function. Since the robust function
ρ (·) is a smooth concave function, we can easily majorize at
some point simply by linearizing:

ρ (t) ≤ ρ (t0) + ρ′ (t0) (t− t0) .

In the context of our problem, the problem at iteration k
(where a central subspace P(k) of dimension s(k) is available)
is

min
P∈P(s,n)

1

R

R∑

r=1

ρ
(
d2r

(
P(k)

))

+ ρ′
(
d2r

(
P(k)

))(
d2r (P)− d2r

(
P(k)

))

or, removing unnecessary constant terms,

min
P∈P(s,n)

1

R

R∑

r=1

ρ′
(
d2r

(
P(k)

))
d2r (P) .

Let us now define the normalized weights that define a simplex

w̄(k)
r =

ρ′
(
d2r

(
P(k)

))
∑R

r=1 ρ
′ (d2r

(
P(k)

)) , w̄(k)
r ≥ 0,

∑

r

w̄(k)
r = 1.
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With this definition we can obtain the next iterate P(k+1) as the
solution to

min
s∈{0,1,...,n}
P∈P(s,n)

1

2

R∑

r=1

w̄(k)
r ‖P−Pr‖2F . (8)

Expanding the cost function (8), we obtain

min
s∈{0,1,...,n}
P∈P(s,n)

1

2
tr
(
P
(
I− 2P

(k)
w

)
+P

(k)
w

)
, (9)

where we have used the fact that
∑R

r=1 w̄
(k)
r tr(P) = tr(P) and

P
(k)
w is the weighted average projection matrix given by

P
(k)
w =

R∑

r=1

w̄(k)
r Pr.

Writing the projection matrix in (9) as P = UUH and dis-
carding constant terms, the optimization problem can be rewrit-
ten as

min
U∈S(s,n)

tr
(
UH

(
I− 2P

(k)
w

)
U
)
.

Then, the optimal order at iteration k + 1, s(k+1), is the num-
ber of negative eigenvalues of the matrix

S(k) = I− 2P
(k)
w . (10)

While the non-robust average projection matrix in (4) equally
weights all subspaces in the collection by w̄

(k)
r = 1/R, the ro-

bust version uses different weights at each iteration. It is also

clear that P
(k)
w is symmetric with real eigenvalues bounded

above by one, like its non-robust versionP =
∑

r Pr/R. A uni-
tary basis for the central subspace at iteration k + 1 is given by

the s(k+1) largest eigenvectors of P
(k)
w , where recall that s(k+1)

is the number of non-negative eigenvalues of S(k) in (10).
Notice that the objective function (5) is bounded below and

that the sequence of objective values at each iteration is non-
increasing. Then, the convergence of the sequence of robust
order estimates s(1), s(2), . . . , to a stationary point s∗ is guar-
anteed. For a more detailed study of the convergence of MM
algorithms, the reader is referred to [21].

III. DISTRIBUTIONS ON THE MANIFOLD OF

PROJECTION MATRICES

In many problems it is useful to assume that the measured
subspaces {〈Vr〉}Rr=1 are random samples drawn from an un-
derlying distribution. Uniform and non-uniform distributions on
the Grassmann manifold G(k, n) or, equivalently, on the man-
ifold of projection matrices of rank = k, P (k, n), have been
extensively discussed in [29]. For uniform distributions the ba-
sic experiment is this: generateX as a randomn× k matrix with
i.i.d CN (0, 1) random variables. Perform a QR decomposition
of this random matrix as X = QR, then, QH where H ∈ U(k)
is any unitary matrix independent of X, is uniformly distributed
on G(k, n), and QQH is uniformly distributed on P (k, n). Re-
member that points on G(k, n) are equivalence classes of n× k
matrices, where Q1 ∼ Q2 if Q1 = Q2H for some H ∈ U(k).

If P is uniformly distributed on P (k, n), it is immediate to
prove that (see [29], pp. 29)

E[P] =
k

n
In,

so all eigenvalues of the mean projection matrix when the
subspaces are uniformly distributed are identical to ki = k/n,
i = 1, . . . , n, indicating no preference for any particular direc-
tion. In this way, the proposed order fitting rule, applied to an
average of uniformly-distributed subspaces, will tend to return
0 if k < n/2, and n otherwise, in both cases suggesting there is
no central low-dimensional subspace.

The matrix Langevin (or von Mises-Fisher) has been sug-
gested as a non-uniform distribution on the Stiefel and Grass-
mann manifolds [29]–[31]. For real n× k orthogonal frame X,
the matrix Langevin, as defined by Downs in [32], has an expo-
nential distribution of the formL(X) ∝ exp

{
tr(BTX)

}
, where

B = UDVT is a matrix that parameterizes the distribution with
U an n× k slice of an n× n orthogonal matrix, V a k × k or-
thogonal matrix, and D a k × k diagonal matrix with positive
entries. The matrices U and V are interpreted as orientations,
while the diagonal elements of D are concentration parame-
ters along the k directions determined by U and V. The matrix
Langevin L(X) is unimodal and the density is maximized at
X = UVT , which is the central k-frame or subspace of the
distribution. Note that when B = 0 we recover the uniform dis-
tribution. As suggested in [29], to generate samples from L(X)
we might use a rejection sampling mechanism with the uniform
as proposal density. This rejection sampling, however, can be
very inefficient for large n and k > 1. More efficient sampling
algorithms have been proposed in [33].

The uniform and the matrix Langevin are continuous distribu-
tions on the manifold of projection matrices of fixed rank = k.
To deal with subspaces or projection matrices that do not live
on the same manifold we would need distributions defined over
unions of Grassmannians, which, to the best of our knowledge,
have not been studied. Nevertheless, it is possible to define the
following discrete distribution that will be useful for the appli-
cation of the proposed subspace averaging technique to array
processing in Section IV.

Definition 3.1: LetU = [u1 · · · un] ∈ U(n) be an arbitrary
unitary basis of the ambient space, and let α = (α1, . . . , αn)
with 0 ≤ αi ≤ 1; the αi are ordered from largest to smallest,
but they need not sum to 1. We define a discrete distribution D
on the set of random projection matricesP = VVH (or, equiva-
lently, the set of random subspaces 〈V〉, or set of framesV) with
parameter vector α and orientation matrix U. The distribution
of P will be denoted P ∼ D(U,α) or V ∼ D(U,α).

To shed some light on this distribution, let us explain the ex-
periment that determinesD. Draw 1 includesu1 with probability
α1, and excludes it with probability (1− α1); draw 2 includesu2

with probability α2, and excludes it with probability (1− α2);
continue in this way until draw n includes un with probability
αn, and excludes it with probability (1− αn). We may call the
string i1, i2, . . . , in, the indicator sequence for the draws; that is,
ik = 1, if uk is drawn on draw k, and ik = 0 otherwise. In this
way Pascal’s triangle shows that the probability of drawing the
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subspace 〈V〉 is p(〈V〉) = ∏
I αi

∏
I(1− αj), where the index

set I is the set of indices k for which ik = 1 in the construction of
V. This is also the probability law on frames V and projections
P. For example, the probability of drawing an empty frame is∏n

1 (1− αi), the probability of drawing the dimension-1 frame
uiu

H
i is αi

∏
j =i(1− αj), and so on. It is clear from this pdf

on the 2n frames that all probabilities lie between 0 and 1, and
that they sum to 1.

Let Pr ∼ D(U,α), r = 1, . . . , R, be a sequence of i.i.d.
draws from the distribution D, and let P =

∑
r Pr/R be its

sample mean with eigenvalues (k1, . . . , kn). Then, we have the
following properties:

1) E[Pr] = Udiag(α)UH , that is, the mean is not generally
a projection.

2) E [tr(Pr)] =
∑n

i=1 αi.
3) E [ki] = αi.
These properties follow directly from the definition of

D(U,α).
Remark 1: The αi’s control the concentrations or probabil-

ities in the directions determined by the unitary basis U. For
instance, if αi = 1 all random subspaces contain direction ui,
whereas if αi = 0 the angle between ui and all random sub-
spaces drawn from that distribution will be π/2.

Example 1: Suppose U = [u1,u2,u3] is the standard basis
in R3 and let α = (3/4, 1/4, 1/4). The discrete distribution
P ∼ D(U,α) has an alphabet of 23 = 8 subspaces with the
following probabilities:
� Pr (P = 0) = 9/64
� Pr

(
P = u1u

H
1

)
= 27/64

� Pr
(
P = u2u

H
2

)
= 3/64

� Pr
(
P = u3u

H
3

)
= 3/64

� Pr
(
P = u1u

H
1 + u2u

H
2

)
= 9/64

� Pr
(
P = u1u

H
1 + u3u

H
3

)
= 9/64

� Pr
(
P = u2u

H
2 + u3u

H
3

)
= 1/64

� Pr (P = I) = 3/64
The distribution is unimodal with mean

E[P] = Udiag(α)UH .

and expected dimension E[tr(P)] = 5/4. Given R draws from
the distribution P ∼ D(U, α), the eigenvalues of the sample
average projection P =

∑R
r=1 Pr/R converge to ki → αi as R

grows, and the proposed order fitting rule will return s∗ = 1 as
the dimension of the central subspace for this example. It is easy
to check that the probability of drawing a dimension-1 subspace
for this example is 33/64.

IV. SUBSPACE AVERAGING FOR SOURCE ENUMERATION

In this section we apply the proposed order fitting rule for
subspace averaging to the problem of estimating the number of
signals received by a sensor array, which is referred to as source
enumeration. This is a classic and well-researched problem in
radar, sonar, and communications [34], [35], and numerous cri-
teria have been proposed over the last decades to solve this prob-
lem, most of which are given by functions of the eigenvalues of
the sample covariance matrix [15], [36]–[42]. These methods
tend to underperform when the number of antennas is large and

Fig. 1. Source enumeration problem in large scale arrays: estimating the num-
ber of sources K in a ULA with a high number of antenna elements M .

the number of snapshots is relatively small in comparison to the
number of antennas, the so-called small-sample regime [17],
which is the situation of interest to this paper.

For instance, [43] showed that the penalty term used by the
MDL criterion is effective in preventing overestimation of the
number of sources, but it causes a considerable increase in the
probability of underestimation when the number of snapshots
(in relation to the number of antennas) is low. Other perfomance
studies of classic information-theoretic criteria can be found in
[44], [45], where similar conclusions are drawn.

To overcome this limitation of classic information-theoretic
criteria, our method is to construct a collection of subspaces
based on the array geometry and a random sampling procedure
from a specifically designed distribution D, and then use the
order fitting rule for averages of projections to enumerate the
sources. This SA method is particularly effective when the di-
mension of the input space is large (high-dimensional data) and
we have few snapshots, which is when the eigenvalues of sample
covariance matrices are poorly estimated and methods based on
functions of these eigenvalues underperform.

A conventional approach to order determination is to compute
likelihoods for a sequence of rank-k plus diagonal covariance
models for multivariate normal measurements [46], [37], and
then to penalize likelihoods for large ranks k. The resulting for-
mulas use sums and products of sub-dominant eigenvalues of
a sample covariance matrix in what amount to tests of white-
ness of the trailing sequence of eigenvalues. In these methods,
the scale of the rank-k and diagonal components are implicitly
estimated in the estimation of the covariance model. In our ap-
proach the eigenvalues of the sample covariance matrix are used
only to determine a distribution on a space of subspaces that
could have produced the sample covariance. A bootstrap draws
subspaces from this distribution, averages them, and returns an
order for the average. This is the estimated number of sources.
The procedure is scale-invariant.

A. Problem Statement

Let us consider K narrowband signals impinging on a large,
uniform, half-wavelength linear array with M antennas (cf.
Fig. 1). The received signal is

x[t] = [a(θ1) · · · a(θK)] s[t] + e[n] = As[t] + e[t], (11)
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where s[t] = [s1[t], . . . , sK [t]T is the vector of complex
gains sk[t] for M × 1 complex array response a(θk) =
[1 e−jθk . . . e−jθk(M−1)]T to the kth source whose direction-
of-arrival (DOA) θk is unknown. The signal and noise vectors
are modeled as s[t] ∼ CNK(0,S) ande[t] ∼ CNM (0, σ2I), re-
spectively. The dimensions are these: x ∈ CM ,A ∈ CM×K , s ∈
CK , and e ∈ CM . From the signal model (11), the theoretical co-
variance matrix is

R = E
[
x[t]xH [t]

]
= ASAH + σ2I.

We assume there are N snapshots collected in the data matrix
matrix X = [x[1] . . . x[N ]]. The source enumeration problem
consists of estimating K from X.

B. Subspace Generation

A key ingredient of the proposed technique is the method of
generating the collection of subspaces from which to estimate
the average projection matrix and its dimension. In some ap-
plications, such as image or video processing, the collection of
subspaces might be given, but in array processing the signal
subspace is an array manifold, to be estimated from array snap-
shots. For instance, when a uniform linear array (ULA) is used,
we can exploit the shift-invariance property to estimate a sub-
space from the data acquired by a subarray of the sensors. The
subspaces could also be estimated from subsets of L < N snap-
shots randomly selected from the original dataset, which would
be appropriate for cyclostationary snapshots, or using any other
bootstrapping scheme.

For the SA method to be effective, it is important that the
subspaces to average overlap as much as possible with the true
signal subspace. In fact, as long as each extracted subspace con-
tains a large common portion of the signal subspace and (more
or less) independent portions of the noise subspace, then, the av-
eraging procedure enhances signal coordinates while averaging
out noise coordinates. As we will see, this translates into a better
performance for the proposed order estimation rule compared to
the state-of-the-art.

In the following, we describe a subspace generation procedure
that has proven to be effective for this particular application. It
generates random subspaces by randomly sampling from the
distribution D(U,α), whose orientations U and concentrations
α are determined by the eigenvectors and eigenvalues of the
sample covariance matrix. Moreover, it exploits the shift invari-
ance property of ULAs. A preliminary version of this method
that only exploited the shift-invariance property was presented
in [20].

1) Shift Invariance: When uniform linear arrays are used, a
property called shift invariance holds, which forms the basis of
the ESPRIT method [47], [48] and its many variants. Let As be
the L×K matrix with rows s, . . . , s+ L− 1 extracted from
the steering matrix A. This steering matrix for the sth subarray
is illustrated in Fig. 2.

Then, from (11) it is readily verified that

Asdiag(e−jθ1 , . . . , e−jθK ) = As+1, s = 1, . . . ,M − L+ 1,

Fig. 2. L-dimensional subarrays extracted from a uniform linear array with
M > L elements.

which is the shift invariance property. In this way, As and As+1

are related by a nonsingular rotation matrix,

Q = diag(e−jθ1 , . . . , e−jθK ),

and therefore they span the same subspace. That is, 〈As〉 =
〈As+1〉, with dim(〈As〉) = K < L. In ESPRIT, two sub-arrays
of dimension L = M − 1 are considered, and thus we have
A1Q = A2, where A1 and A2 select, respectively, the first and
the last M − 1 rows of A.

There is an interesting characterization of the shift invariance
property. Let xs[t] be an L× 1 vector containing the noise-free
observations acquired by sensors s, . . . , s+ L− 1 of x[t], and
let Sr denote a shift operator, so that Srxs[t] = xs+r[t]. Then,
in the noise-free model xs[t] = Ass[t], this shift invariance pro-
duces

Srxs[t] = SrAss[t] = As+rs[t] = AsQ
rs[t].

The source signal Qrs[t] is distributed as s[t] is distributed,
provided the distribution of s[t] is invariant to left orthogonal
transformation, as for example when s[t] is complex normal
with identity covariance matrix, makingQ a measure-preserving
transformation. So in these cases, shift on xs[t] is measure-
preserving on s.

When noise is present, however, the shift-invariance property
does not hold for the main eigenvectors extracted from the sam-
ple covariance matrix. The Optimal Subspace Estimation (OSE)
technique proposed by Vaccaro et al. obtains an improved esti-
mate of the signal subspace with the required structure (up to the
first order) [49]. The OSE has recently been used with the sub-
space averaging of [14] to improve DOA estimation [19], [50],
[51]. Nevertheless, the OSE technique requires the dimension
of the signal subspace to be known in advance and, therefore,
does not apply directly to the source enumeration problem.

From the L× 1 (L > K) sub-array snapshots xs[t] we can
estimate an L× L sample covariance as

R̂s =
1

N

N∑

t=1

xs[t]x
H
s [t].

Note that each R̂s block corresponds to an L× L submatrix of
the full sample covariance R̂ extracted along its diagonal, that
is, in Matlab notation R̂s = R̂(s : s+ L− 1, s : s+ L− 1).

Due to the shift invariance property of uniform linear arrays
the noiseless signal subspaces of the theoretical Rs are identi-
cal. Since there are M sensors and we extract L-dimensional
subarrays, there are S = M − L+ 1 different submatrices
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R̂s, s = 1, . . . , S. For each R̂s we compute its eigendecom-
position R̂s = UsΛsU

H
s , where Λs = diag (λs,1, . . . , λs,L),

λs,1 ≥ · · · ≥ λs,L.
For each R̂s we can define a distribution D(Us,αs) from

which to draw random subspaces: Psk, k = 1, . . . ,K. Obvi-
ously a key point for the success of the SA method is to de-
termine a good distribution D(Us,αs) and a good sampling
procedure to draw random subspaces. This is described in the
next subsection.

2) Random Generation of Subspaces: To describe the ran-
dom sampling procedure for subspace generation, let us take
for simplicity the full M ×M sample covariance matrix R̂ =
UΛUH , where Λ = diag (λ1, . . . , λM ), λ1 ≥ · · · ≥ λM .

Each random subspace 〈V〉 has dimension dim(〈V〉) =
kmax, where kmax < min(M,N) is an overestimate of the max-
imum number of sources that we expect in our problem. The
subspace is iteratively constructed as follows:

1) Initialize 〈V〉 = ∅
2) While rank(V) ≤ kmax do

a) Generate a random draw 〈G〉 ∼ D(U,α), accord-
ing to the sampling description in Definition 3.1

b) 〈V〉 = 〈V〉⋃ 〈G〉
The orientation matrix U of the distribution D is given by

the eigenvectors of the sample covariance matrix. On the other
hand, the concentration parameters should be chosen such that
the signal subspace directions are selected more often than the
noise subspace directions, and, consequently, they should be a
function of the eigenvalues of the sample covariance λk. In this
work we propose to use the following concentration parameters
for D(U,α)

αi =
Δλi∑
i Δλi

, (12)

where

Δλi =

{
λi − λi+1, i = 1, . . . ,M − 1,

0, i = M.
(13)

Here is a motivating example for this choice. Consider
the wide-sense stationary time series {x[n]} with covariance
r[k] = E[x[n]x∗[n+ k]] = β sin(βπk)/(βπk) for all k, where
0 < β < 1 determines the signal bandwidth. A snapshot x =
[x[0], . . . , x[M − 1]] has symmetric Toeplitz covariance matrix
R with entries r[k] on its k-th diagonal. This covariance matrix
may be written

R =

∫ βπ

−βπ

dθ

2π
S(θ)ψ(θ)ψH(θ)

whereψ = [1, ejθ, . . . , ejθ(M−1)]T , and S(θ) = 1. The trace of
this matrix is βM , so the sum of its eigenvalues is this trace. The
eigenvalue decomposition of the covariance R is R = FKFT ,
where the columns of F are the discrete prolate spheroidal wave
functions, or Slepian sequences [52]. The first �βM� eigen-
values λi are approximately 1, and the trailing M − �βM� are
approximately 0. Moreover, the matrixFKFT is approximately
a rank �βM� projection onto the subspace spanned by the first
�βM� columns of the matrix FKFT . An estimator of this rank

is argmaxi(λi − λi+1), which returns the integer part of βM .
This suggests that the functionαi = λi − λi+1, after proper nor-
malization, would be a suitable function of the eigenvalues to
use in a sequence of stochastic draws of subspaces, as outlined
previously.

With this choice for D(U,α), the probability of picking the
ith direction from U is proportional to λi − λi+1, thus placing
more probability on jumps of the eigenvalue profile. Notice also
that whenever λi = λi+1 then αi = 0, which means that ui will
never be chosen in any random draw. We take the convention
that if Δλi = 0, ∀i, then we do not apply the normalization in
Eq. (12) and hence the concentration parameters are also all
zero: αi = 0, ∀i.

A summary of the proposed algorithm is shown in
Algorithm 1.

3) Subspace Averaging (SA) Criterion: For each subarray
sample covariance matrix we can generate T random subspaces
according to the procedure described in the previous section.
Since we have S subarray matrices, we get a total of R = S T
subspaces. The SA approach simply finds the average projection
matrix

P =
1

ST

S∑

s=1

T∑

t=1

Pst,

to which the order estimation method described in Section II
can be applied. Notice that the only parameters in the method
are the dimension of the subarrays, L, the dimension of the ex-
tracted subspaces, kmax, and the number T of random subspaces
extracted from each subarray. For large-scale arrays (M ≥ 50),
we have found that L = M − 5, kmax = �M/5�, and T = 20
provide in general good performance for many scenarios.

A summary of the proposed algorithm is shown in
Algorithm 2.

Regarding the computational complexity of the method, the
proposed SA technique requires (S + 1)O(L3) operations since
we need to perform S + 1 EVDs of L× L matrices: S for the
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subarray sample covariance matrices R̂s, s = 1, . . . , S and one
for the average projection matrix P. For large scale arrays with
L ≈ M so that resolution is not significantly reduced, the com-
putational complexity of the SA method is roughly S + 1 times
higher than that of standard methods, which have a complexity
of O(M3) due to the EVD of R̂.

C. Consistency of the SA Method

In this section we show that the SA criterion equipped with
the proposed subspace generation procedure is consistent in the
classic asymptotic regime (fixed M , N → ∞).

Theorem 1: LetR = ASAH + σ2I be anM ×M theoreti-
cal covariance matrix with eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σK >
σK+1 = · · · = σM , corresponding to a scenario with K un-
correlated sources. Let R̂ be the sample covariance matrix
formed by N snapshots and let us denote its eigenvalues as λi,
i = 1, . . . ,M . Then, if M ≥ L > kmax ≥ K, k̂SA is a consis-
tent estimator of K as N → ∞.

Proof: Let us take without loss of generality the case M =
L, that is, we only generate subspaces from the full sample
covariance matrix. In the classic fixed system-size M , large
sample-size asymptotic regime N → ∞, the eigenvalues of the
sample covariance estimated from independent snapshots con-
verges to the theoretical ones λi → σi, i = 1, . . . ,M . Then, in
the first draw to construct each random subspace we sample from
D(U,α) where the orientation matrix U contains the eigenvec-
tors of R and the concentration parameters are

α = (α1, . . . , αK , 0, . . . , 0) . (14)

In (14), the M −K trailing concentration values are zero be-
cause they are constructed from (normalized) differences of
eigenvalues, whose M −K smallest values are identical in the
asymptotic regime: σK+1 = · · · = σM .

Therefore, the first draw samples exclusively from the signal
directions. Since we sample until the dimension of the subspace
is kmax, or until all concentration parameters are zero, then, as
long as kmax ≥ K, all random subspaces will be the true signal
subspace. Consequently, for any number of generated subspaces
the average projection matrix has exactly K eigenvalues equal
to 1 and M −K eigenvalues equal to zero, and the SA criterion
returns k̂max = K, thus proving the result. �

Notice that this consistency result also holds as the noise vari-
ance σ2 → 0, unlike the minimum description length (MDL)

Fig. 3. Estimated order as a function of the SNR for different values of (k, n).
In all examples the number of measured subspaces is R = 200.

criterion which, as shown in [53], is inconsistent with increas-
ing signal-to-noise ratio.

V. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
order fitting rule by means of numerical examples. Firstly, we
study the performance of the order fitting rule, as well as its
robust version. Secondly, we consider the application of sub-
space averaging techniques as a method of enumerating sources
in large linear arrays, under conditions of low sample support.

A. Performance of the Order Fitting Rule

Experiment 1: In the first example, we generate a collection
of R subspaces, 〈Vr〉 ∈ G(k, n), r = 1, . . . , R, as follows: we
first generate

Gr =
[
V0 | 0n×(n−k)

]
+ σZr, r = 1, . . . , R (15)

where V0 ∈ Cn×k is a matrix whose columns form an or-
thonormal basis for a central subspace 〈V0〉, 0n×(n−k) is an
n× (n− k) zero matrix, and Zr ∈ Cn×n is a matrix whose en-
tries are independent and identically distributed complex Gaus-
sian random variables with zero mean and variance 1/n. The
value of σ in (15) determines the signal-to-noise-ratio, which in
turn determines the spread of the subspaces around its mean and
is defined as SNR = 10 log10(

k
nσ2 ).

An orthogonal basis for the rth subspace, Vr, is then con-
structed from the first k orthonormal vectors of the QR decom-
position of Gr. For this example all subspaces in the collection
have exactly the same dimension.

Fig. 3 shows the estimated order as a function of the SNR
for different values of (k, n) and a total number of R = 200
subspaces. The curves represent averaged results of 500 inde-
pendent simulations. As we observe, the estimated order co-
incides with the true one as the SNR grows, thus suggesting
consistency of the method with increasing SNR. Also, there is
phase-transition behavior between s∗ = 0 (no central subspace)
and the correct order s∗ = k. Similar phase-transition phenom-
ena have been reported for the rank estimation problem of a
sample covariance matrix in the asymptotic regime [54]. Based
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Fig. 4. Probability of correct order detection for robust and non-robust meth-
ods (M = 100, k = 3, n = 40, SNR2 = −20 dB and ε = 0.5).

on random matrix arguments, [54] provides a threshold, which
depends on the SNR and the ratio of sensors to snapshots, below
which the sample eigenvalues are unrelated to the true eigenval-
ues and hence any order estimation rule based on sample eigen-
values provides inconsistent results. The results of Fig. 3 seem
to suggest that a similar concentration-of-measure phenomenon
happens for the sample eigenvalues of an average projection ma-
trix. This phase transition apparently depends also on the SNR
as well as on the ratio k/n.

Experiment 2: In the second experiment we evaluate the ro-
bust order fitting rule proposed in II-D. To this end, we create a
collection of subspaces contaminated by outliers as follows: we
first generate

Gr =
[
V0 | 0n×(n−k)

]
+ Zr, r = 1, . . . , R

where now the elements of Zr are drawn from a Gaussian mix-
ture Zr(i, j) ∼ (1− ε)CN (0, σ2

1/n) + ε CN (0, σ2
2/n), where

σ2
2 � σ2

1 . In words, with probability (1− ε) the central sub-
space is additively perturbed by a random matrix whose en-
tries are i.i.d. zero-mean Gaussians random variables with vari-
ance σ2

1/n, whereas with probability ε the entries of the noise
matrix are drawn from a Gaussian distribution with variance
σ2
2/n � σ2

1/n. Again, an orthogonal basis for the rth subspace,
Vr, is constructed from the first k orthonormal vectors of the
QR decomposition of Gr. In this way, we emulate a Gaussian
mixture model for this problem. For low values of σ2

1 , with prob-
ability 1− ε the subspaces are well clustered around V0. On the
other hand, with probability ε the subspaces are generated with
a much higher variance σ2

2 � σ2
1 and hence they can be inter-

preted as outliers.
The signal-to-noise-ratio for the normal data (inliers) and the

outliers is defined as SNRi = 10 log10(
k

nσ2
i
) for i = 1, 2. For

this example, we estimate the order of the central subspace using
the extrinsic mean squared error distance, and the robust versions
using the l1 norm (6) and the Huber loss function with T = 0.5
(7). In all simulations, the MM algorithm converged in less than 5
iterations. We consider a set ofR = 100 subspaces of dimension
k = 3 in an ambient space of dimension n = 20. The proportion
of outliers is ε = 0.5, and its signal-to-noise ratio is SNR2 =
−20 dB. Fig. 4 shows the probability of correct order estimation

as the signal-to-noise-ratio for the inliers, SNR1, varies, where
increased robustness of both the l1 and Huber cost functions are
evident.

B. Application to Source Enumeration

We consider a scenario with K narrowband incoherent unit-
power signals, with DOAs separated by Δθ in electrical an-
gle, impinging on a uniform linear array with M antennas and
half-wavelength element separation (cf. Fig. 1). The number of
snapshots is N . The proposed SA method uses subarrays of size
L = M − 5, so the total number of subarrays isS = 6. From the
sample covariance matrix of each subarray we generate T = 20
random subspaces of dimension kmax = �M/5�, which gives
us a total of R = 120 subspaces on the Grassmann manifold
G(kmax, L) to compute the average projection matrixP. For the
examples in this section, we define the signal-to-noise-ratio as
SNR = 10 log10(1/σ

2), which is the input or per-sample SNR.
The SNR at the output of the array is 20 log10(M) dBs higher.

Some representative methods for source enumeration with
high-dimensional data and few snaphots have been selected for
comparison. They exploit random matrix results and are specif-
ically designed to operate in this regime. Further, all of them
are functions of the eigenvalues λ1 ≥ · · · ≥ λM of the sample
covariance matrix R̂. We now present a brief description of the
methods under comparison.
� LS-MDL criterion in [55]: The standard MDL method pro-

posed by Wax and Kailath in [37], based on a fundamental
result of Anderson [46], is

k̂MDL = argmin
0≤k≤M−1

(M − k)N log

(
a(k)

g(k)

)

+
1

2
k(2M − k) logN, (16)

where a(k) and g(k) are the arithmetic and the geometric
mean, respectively, of the M − k smallest eigenvalues of
R̂. When the number of snapshots is smaller than the num-
ber of sensors or antennas (N < M ), the sample covari-
ance becomes rank-deficient and (16) can not be applied
directly.
The LS-MDL method proposed by Huang and So in [55]
replaces the noise eigenvalues λi in the MDL criterion by
a linear shrinkage (LS), calculated as

ρ
(k)
i = β(k)a(k) + (1− β(k))λi, i = k + 1, . . . ,M,

where β(k) = min(1, α(k)), with

α(k) =

∑M
i=k+1 λ

2
i + (M − k)2a(k)2

(N + 1)
(∑M

i=k+1 λ
2
i − (M − k)a(k)2

) .

� NE criterion in [17]: The method proposed by Nadakuditi
and Edelman in [17], which we refer to as the NE criterion,
is given by

k̂NE = argmin
0≤k≤M−1

{
1

2

(
Ntk
M

)2
}

+ 2(k + 1),
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Fig. 5. Probability of correct detection vs. SNR for all methods. In this exper-
iment, there are K = 3 sources separated Δθ = 10◦, the number of antennas
is M = 100, the number of snapshots is N = 60 and L = �M − 5�.

Fig. 6. Probability of correct detection vs. SNR for all methods. In this exper-
iment, there are K = 3 sources separated Δθ = 10◦, the number of antennas
is M = 100, the number of snapshots is N = 150 and L = �M − 5�.

where

tk =

[ ∑M
i=k+1 λ

2
i

a(k)2(M − k)
−
(
1 +

M

N

)]
M.

� BIC method for large-scale arrays in [16]: The variant of
the Bayesian Information Criterion (BIC) [39] for large-
scale arrays proposed in [16] is

k̂BIC= argmin
0≤k≤M−1

2(M − k)N log

(
a(k)

g(k)

)
+P (k,M,N),

where

P (k,M,N) = Mk

(
log(2N)− 1

k

k∑

i=1

log

(
λi

a(k)

))
.

Experiment 3: In this example we consider an array with
M = 100 antennas receivingK = 3 sources separated byΔθ =
10◦, and N = 60 snapshots, thus yielding a rank-deficient sam-
ple covariance matrix. The Rayleigh limit for this scenario is
2π/M ≈ 3.6◦, so in this example the sources are well separated.

Fig. 5 shows the probability of correct detection vs. the signal-
to-noise-ratio (SNR) for all methods under comparison. Increas-
ing the number of snapshots to N = 150 and keeping fixed the
rest of the parameters, we obtain the results shown in Fig. 6. For

Fig. 7. Probability of correct detection vs. SNR for all methods. In this exper-
iment, there are K = 3 sources separated Δθ = 2◦, the number of antennas is
M = 100, the number of snapshots is N = 150 and L = �M − 5�.

Fig. 8. Probability of correct detection vs. SNR for all methods. In this exper-
iment, there are K = 3 sources separated Δθ = 2◦, the number of antennas is
M = 100, the number of snapshots is N = 60 and L = �M − 5�.

this scenario, where source separations are roughly 3 times the
Rayleigh limit, the SA method outperforms competing methods.

Experiment 4: To analyze the impact of the separation be-
tween sources, we consider again a scenario with M = 100
antennas, and K = 3 sources but now separated by angles of
Δθ = 2◦, which is within the Rayleigh limit of approximately
3.6◦. The results for N = 150 and N = 60 snapshots are shown
in Figs. 7 and 8, respectively. In comparison to the previous
examples with sources separated Δθ = 10◦, for closely sepa-
rated sources (below, or close to, the Rayleigh limit), there is a
requirement for higher SNRs and/or larger sample support for
the methods to perform satisfactorily. Again, the SA method
provides the best performance. Also, the LS-MDL method
seems to be more robust than NE and BIC for very low sam-
ple support scenarios (N = 60).

Experiment 5: In this experiment we compare the
performance for an increasing number of snapshots when
the number of antennas is fixed to M = 100 antennas, the
signal-to-noise-ratio is SNR = −16 dB, and there are K = 3
uncorrelated sources separated by Δθ = 10◦. As Fig. 9 shows,
the SA method provides very competitive results with only a
few snapshots, while the other methods require a much higher
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Fig. 9. Probability of correct detection vs. number of snapshots for all meth-
ods. In this experiment, there are K = 3 sources separated Δθ = 10◦, the num-
ber of antennas is M = 100, SNR = −16 dB and L = �M − 5�.

Fig. 10. Probability of correct detection vs. number of snapshots for all meth-
ods. In this experiment, there are K = 6 sources separated Δθ = 12◦, the num-
ber of antennas is M = 120, SNR = −16 dB and L = �M − 5�.

number of snapshots to consistently estimate the right number
of sources.

Experiment 6: In the last experiment we consider an array with
M = 120 antennas, the signal-to-noise-ratio is SNR = −16 dB,
and there are K = 6 uncorrelated sources now with separation
ofΔθ = 12◦. As Fig. 10 shows, the SA method starts performing
well with very few snapshots.

Discussion: It may be said that the method NE uses asymp-
totic results, based on large random matrix theory, to derive an
order fitting rule. The rule is then applied to randomly generated
eigenvalues computed from finite samples of finite matrices, as
if these eigenvalues behaved as the eigenvalues for a large ran-
dom matrix. They do, approximately. The methods LS-MDL
(based on MDL), and BIC use geometric and arithmetic means
of sub-dominant eigenvalues, derived from likelihood formulas,
to determine the likelihood of a factor model of a fixed order.
In fact, in the computation of likelihood, it is the likelihood of
a signal covariance matrix FΛFH , of order k, plus a diagonal
noise covariance σ2I of unknown variance σ2 that is computed.
So, in a very real sense, all these methods are based on the
likelihood of a full covariance model for multivariate normal
data, and likelihoods of different models are rank-ordered after
penalties for large order are applied. This rank ordering depends

critically on the scales of the components FΛFH and σ2 that
are identified in the likelihood computation. The method SA,
treats eigenvalues computed from finite samples of finite matri-
ces as variables that only indicate which model subspace could
have produced these eigenvalues as the eigenvalues of a cor-
responding covariance matrix. Importantly, all eigenvalues are
used in a bootstrap, and not only the sub-dominant eigenvalues.
Perhaps more importantly, scale is removed from consideration.
That is, the methods LS-MDL and BIC account for scale of the
low-rank and diagonal components of covariance in the fitting
of a covariance model to the data, whereas the method of SA
is scale-invariant, as it computes scale-invariant probabilities
from the covariance eigenvalues, without a low-rank-plus diag-
onal covariance model, and then produces draws of randomly-
generated, scale-invariant, subspaces. Subspace modeling seems
better matched to the problem of order determination for an ar-
ray manifold than does covariance modeling. The experiments
in this section indicate that this normalization with respect to
scale is useful for estimating model order in experiments where
the scales of the signal covariance and the noise covariance are
unknown, and the SNR and/or sample support are small.

VI. CONCLUSIONS

In this paper we have studied the problem of source enumera-
tion from measurements in a uniform linear array. The approach
is to extract a subspace from each of several subarrays, and
then average these subspaces for a subspace whose dimension
is the estimated number of far-field sources. A key element of
the method is the automatic order-fitting rule for extracting the
dimension of the average subspace that minimizes the mean-
squared error between the average and each individual subspace.
The net of this procedure is that eigenvalues of a sample covari-
ance matrix determine a distribution on subspaces that could
have produced the measured covariance matrix. This procedure
normalizes scale by replacing scale-dependent covariance mod-
els by scale-invariant subspace models. The method requires no
penalty terms for controlling the estimated order.

Simulations indicate performance that is superior to other
published methods, over a range of signal-to-noise ratios, sam-
ple supports, and source separations. The results suggest that the
problem of source enumeration may be viewed as a problem of
identifying an approximating subspace, and its dimension, from
a set of subspaces estimated from measurements. This point of
view stands in contrast to methods that compute likelihood for
covariance models, where scale is retained, and then penalize
these likelihoods for large dimension.
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