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Abstract—This paper studies the existence of optimal invariant
detectors for determining whether P multivariate processes have
the same power spectral density. This problem finds application
in multiple fields, including physical layer security and cognitive
radio. For Gaussian observations, we prove that the optimal invari-
ant detector, i.e., the uniformly most powerful invariant test, does
not exist. Additionally, we consider the challenging case of close hy-
potheses, where we study the existence of the locally most powerful
invariant test (LMPIT). The LMPIT is obtained in the closed form
only for univariate signals. In the multivariate case, it is shown
that the LMPIT does not exist. However, the corresponding proof
naturally suggests an LMPIT-inspired detector that outperforms
previously proposed detectors.

Index Terms—Generalized likelihood ratio test (GLRT), locally
most powerful invariant test (LMPIT), power spectral density
(PSD), Toeplitz matrix, uniformly most powerful invariant test
(UMPIT).

I. INTRODUCTION

THIS work studies the problem of determining whether
P Gaussian multivariate time series possess the same
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(possibly matrix-valued) power spectral density (PSD) at every
frequency. This interesting problem has many applications, such
as comparison of gas pipes [1], analysis of hormonal times se-
ries [2], earthquake-explosion discrimination [3], light-intensity
emission stability determination [4], physical-layer security [5],
and spectrum sensing [6].

The first work to consider this problem was developed by
Coates and Diggle [1]. This work proposed tests, for univariate
and real-valued time series, based on the ratio of periodograms.
First, they presented non-parametric tests based on the com-
parison of the maximum and minimum of the log-ratio of
periodograms over all frequencies. Moreover, assuming a
parametric (quadratic) model for the log-ratio of the PSDs, they
developed a generalized likelihood ratio test (GLRT). These
detectors are further studied in [7]. Following similar ideas to
[1], [7], the work in [2] proposed a graphical procedure, which
resulted in another non-parametric test. The authors of [4]
also considered detectors based on the ratio of periodograms
for a problem with several time series and are based on a
semi-parametric log-linear model for the ratio of PSDs.

A different kind of detector is presented in [8], where the
GLRT was derived without imposing any parametric model.
In particular, they computed the GLRT for testing whether the
PSD of two real multivariate time series are equal at a given
frequency. The extension to complex time series is considered
in [9], where the information from all frequencies is fused into a
single statistic. An alternative way of fusing the information at
all frequencies is derived in [10], but the proposed detector is not
a GLRT anymore. All aforementioned detectors were developed
in the frequency domain. However, there are also other works
that propose time-domain detectors; see, for instance, [11] and
references therein.

The problem considered in this work is to decide whether at
each frequency all P PSD matrices are identical or not. Thus,
the tests for equality of several PSDs may be addressed as an
extension of the classical problem of testing the homogeneity
of covariance matrices [12]. This allows us to use the statistics
for homogeneity at each frequency, which need to be fused into
one statistic afterwards by combining the different frequencies.
Depending on the chosen combination rule, different detectors
(with different performance) may be derived.

Every proposed test so far is either based on ad-hoc principles,
or on the GLRT, which is optimal in the asymptotic regime [13].
However, their behavior for finite data records is unknown. That
is, for finite data records, they may very well be suboptimal.
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Actually, to the best of the authors’ knowledge, neither the uni-
formly most powerful invariant test (UMPIT) nor the locally
most powerful invariant test (LMPIT) have been studied for the
considered problem, with the exception of our previous confer-
ence paper [14], which considers the particular case of P = 2
processes. The conventional approach to derive these optimal
invariant detectors is based on obtaining the ratio of the densities
of the maximal invariant statistic under each hypothesis [15].
The derivation of these distributions is for most problems a very
complicated task, if possible at all, which in many cases pre-
cludes the derivation of optimal invariant detectors. Instead of
pursuing this conventional approach, we may invoke Wijsman’s
theorem [16], [17], as we did in our previous works [18], [19].
This theorem allows us to derive the UMPIT or the LMPIT, if
they exist, without identifying the maximal invariant statistic
and, more importantly, without computing its distributions. Ex-
ploiting Wijsman’s theorem, and assuming Gaussian-distributed
data, this work proves that the UMPIT does not exist for testing
equality of the PSD matrices of P (≥2) processes. Moreover,
focusing on the case of close hypotheses (similar PSDs), we
prove that the LMPIT only exists in the case of univariate pro-
cesses, for which we find a closed-form expression; whereas it
does not exist for the general case of multivariate time series.
However, the non-existence proof of the LMPIT in the multi-
variate case suggests one LMPIT-inspired detector, which turns
out to outperform previously proposed schemes.

The paper is organized as follows. Section II presents the
mathematical formulation of the problem. The proof of the non-
existence of the UMPIT and the LMPIT for the general case is
presented in Section III, whereas Section IV derives the LMPIT
for univariate processes. Due to the non-existence of the LMPIT
in the general case, we present a LMPIT-inspired detector in
Section V. The performance of the proposed detector is illus-
trated by means of numerical simulations in Section VI, and
Section VII summarizes the main conclusions of this work.

A. Notation

In this paper, matrices are denoted by bold-faced upper case
letters; column vectors are denoted by bold-faced lower case
letters, and light-face lower case letters correspond to scalar
quantities. The superscripts (·)T and (·)H denote transpose and
Hermitian, respectively. A complex (real) matrix of dimension
M ×N is denoted by A ∈ CM×N (

A ∈ RM×N ) and x ∈ CM
(
x ∈ RM

)
denotes that x is a complex (real) vector of dimen-

sionM . The absolute value of the complex number x is denoted
as |x|, and the determinant, trace and Frobenius norm of a matrix
A will be denoted, respectively, as det(A), tr(A) and ‖A‖F .
The Kronecker product between two matrices is denoted by
⊗, IL is the identity matrix of size L× L, 0 denotes the zero
matrix of the appropriate dimensions, and FN is the Fourier
matrix of sizeN . We use A−1/2 to denote the Hermitian square
root matrix of the Hermitian matrix A−1 (the inverse of A),
the operator diagL (A) constructs a block diagonal matrix from
the L× L blocks in the diagonal of A, whereas diag(A) yields
a vector with the elements of the main diagonal of A, and
x = vec(X) constructs a vector by stacking the columns of X.

x ∼ CN (μ,R) indicates that x is a proper complex circular
Gaussian random vector of mean μ and covariance matrix R
and E[·] represents the expectation operator. Finally, ∝ stands
for equality up to additive and positive multiplicative constant
(not depending on data) terms.

II. PROBLEM FORMULATION

We are given N samples of P time series that are L variate,
xi [n] ∈ CL , i = 1, . . . , P, and n = 0, . . . , N − 1. These sam-
ples are realizations of zero-mean proper Gaussian processes
that are independent and wide-sense stationary. The problem
studied in this work is to determine whether all these P pro-
cesses have the same power spectral density (PSD) matrix
at every frequency or, alternatively, the same matrix-valued
covariance function. To mathematically formulate the detec-
tion problem, it is necessary to introduce the vector yi =
[xTi [0] · · · xTi [N − 1]]T ∈ CNL , which stacks the N samples
of the ith time series, and y = [yT1 · · · yTP ]T ∈ CP NL . Thus,
the problem can be cast as the following binary hypothesis test:

H1 : y ∼ CN (0,RH1 ) ,

H0 : y ∼ CN (0,RH0 ) ,
(1)

where CN (0,RHi
) denotes a zero-mean circular complex

Gaussian distribution with covariance matrix RHi
. Taking the

independence into account, the covariance matrices are

RH1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · RP

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (2)

and

RH0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

R0 0 · · · 0

0 R0 · · · 0
...

...
. . .

...

0 0 · · · R0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= IP ⊗ R0 , (3)

under H1 and H0 , respectively, with

Ri = E
[
yiyHi

]
=

⎡

⎢
⎢
⎣

Mi [0] · · · Mi [−N + 1]
...

. . .
...

Mi [N − 1] · · · Mi [0]

⎤

⎥
⎥
⎦,

(4)
being a block-Toeplitz covariance matrix built from the
(unknown) covariance sequence of xi [n], Mi [m] = E[xi [n]
xHi [n−m]]. Moreover, under H1 , we do not assume any fur-
ther particular structure and, for notational simplicity, we have
defined the common covariance sequence under H0 as M0 [m].

Dealing with block-Toeplitz covariance matrices is challeng-
ing, since they typically prevent the derivation of closed-form
detectors, as our previous works in [19]–[21] show. These works
also presented a solution to overcome this problem, which is
based on an asymptotic (asN → ∞) approximation of the like-
lihood. Concretely, this approach performs a block-circulant
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approximation of Ri , and results in convergence in the mean-
square sense of the asymptotic likelihood to the likelihood [21].

Assume now that M , with M ≥ L,1 independent and identi-
cally distributed (i.i.d.) realizations of y, say y(0) , . . . ,y(M−1) ,
are available. Then, to obtain the asymptotic likelihood, we must
define the transformation z = [zT1 · · · zTP ]T , where

zi =
(
FH
N ⊗ IL

)
yi =

[
zTi [0] · · · zTi [N − 1]

]T
, (5)

with zi [k] being the discrete Fourier transform (DFT) of xi [n]
at frequency θk = 2πk/N, k = 0, . . . , N − 1. Exploiting this
transformation, the asymptotic approximation of the likelihood
is [19], [20]

p(z(0) , . . . , z(M−1) ;SHi
)

=
1

πP NLM det(SHi
)M

exp
{
−Mtr

(
S−1
Hi

Ŝ
)}

, (6)

where thePNL× PNL sample covariance matrix of the trans-
formed observations is

Ŝ =
1
M

M−1∑

m=0

z(m )z(m )H , (7)

and the covariance matrices under both hypotheses are

SH1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

S1 0 · · · 0

0 S2 · · · 0
...

...
. . .

...

0 0 · · · SP

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (8)

and

SH0 = IP ⊗ S0 . (9)

Moreover, Si is an NL×NL block-diagonal matrix whose
L× L blocks Si,1 , . . . ,Si,N are given by the power spectral
density matrix, i.e.,

Si,k+1 = Si(ejθk ) =
N−1∑

n=0

Mi [n]e−jθk n , (10)

with i = 1, . . . , P, and k = 0, . . . , N − 1. Finally, using the
asymptotic likelihood, the detection problem in (1) is asymptot-
ically equivalent to

H1 : z(m ) ∼ CN (0,SH1 ) , m = 0, . . . ,M − 1,

H0 : z(m ) ∼ CN (0,SH0 ) , m = 0, . . . ,M − 1.
(11)

That is, we are testing two different covariance matrices with
known structure but unknown values.

Although our formulation assumes Gaussian data, as well as
the availability of M realizations each of length N , this is not
very restrictive in practice. First, the Gaussianity assumption
can be dropped since the transformed observations, zi [k], are
samples of the DFT and it is well known, see [22], that un-
der some mild conditions the DFT of large data records yields

1This reasonable assumption is necessary for the derivation of the GLRT.
However, for the study of the existence of optimal invariant detectors, only
PM ≥ L is required.

zi [k] that are independent and Gaussian distributed with co-
variance matrix Si(ejθk ). Moreover, if only M = 1 realization
is available, it is possible to split this single realization into
M windows, but keeping in mind that the realizations may no
longer be i.i.d., as the samples in different windows may be de-
pendent. This resembles the Welch method for PSD estimation.
Moreover, further exploiting on this idea, it would be possible
to increase the number of realizations allowing some overlap
among different windows. However, the study of the side ef-
fects (due to a higher correlation among windows) will not be
analyzed in this work. Finally, the case of different numbersMi

of realizations for each process would require a different treat-
ment, which would be equivalent to the introduction of further
structure (subsets of identical covariance matrices) under the
alternative hypothesis. Although this is a very interesting case,
which is currently under consideration, the modification of the
problem invariances introduces an additional complexity that is
beyond the scope of this paper.

A. The Generalized Likelihood Ratio Test

The typical approach to solve detection problems with un-
known parameters, as (11), is based on the GLRT. Actually, the
works in [8], [9], [11] derived the GLRT for this problem under
different assumptions, but they only studied the case of P = 2
time series. The GLRT in [11] was derived for univariate real
time series, which was extended to multivariate real signals in
[8] and multivariate complex signals in [9]. Here, we present the
(straightforward) extension of these GLRTs to P (≥2) complex
and multivariate processes. Concretely, the GLRT is given by

log G ∝
N−1∑

k=0

P∑

i=1

log

⎡

⎢
⎢
⎣

det
(
Ŝi(ejθk )

)

det
(

1
P

∑P

p=1
Ŝp(ejθk )

)

⎤

⎥
⎥
⎦ , (12)

where

Ŝi(ejθk ) =
1
M

M−1∑

m=0

z(m )
i [k]z(m )H

i [k], (13)

is the sample PSD matrix at frequency θk , i.e., an L× L block
of Ŝ. Alternatively, the GLRT may be rewritten as

log G ∝
N−1∑

k=0

P∑

i=1

log det
(
Ĉi(ejθk )

)
, (14)

where the frequency coherence is

Ĉi(ejθ ) =
(

1
P

P∑

p=1

Ŝp(ejθ )

)−1/2

Ŝi(ejθ )

(
1
P

P∑

p=1

Ŝp(ejθ )

)−1/2

.

(15)

Finally, it is important to address how the threshold must
be chosen. On one hand, we could use Wilks’ theorem [13],
which states that the GLRT is asymptotically (as M → ∞)
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distributed as

−2M
N−1∑

k=0

P∑

i=1

log det
(
Ĉi(ejθk )

)
∼ χ2

(P −1)NL2 , (16)

that is, it is distributed as a Chi-squared distribution with (P −
1)NL2 degrees of freedom. On the other hand, and for the finite
case, we could take into account that the detector is invariant
to MIMO filtering, which allows us to consider that under H0
the PSDs are Si(ejθ ) = IL ,∀θ and i = 1, . . . , P . Thus, under
this assumption we could obtain the thresholds using Monte
Carlo simulations, which will depend on P,L and M , but will
be independent of the specific values of Si(ejθ ).

III. ON THE EXISTENCE OF OPTIMAL DETECTORS

Since GLRTs are not necessarily optimal for finite data
records [23], the goal of this section is to study the existence of
optimal invariant detectors for the hypothesis test in (11). In par-
ticular, we will show that neither the uniformly most powerful
invariant test (UMPIT) nor the locally most powerful invariant
test (LMPIT) exist in the general case.

To derive invariant detectors, such as the UMPIT or the
LMPIT, we must first identify the problem invariances [15].
Specifically, we must define the group of invariant transforma-
tions, which is composed only of linear transformations since
Gaussianity must be preserved. Among those linear transfor-
mations, it is clear that applying the same invertible multiple-
input-multiple-output (MIMO) filtering to all time series does
not modify the structure of the hypotheses. That is, if the PSDs
are equal, the same MIMO filtering yields also identical PSDs
and if they are different, they will stay different. In particular, this
transformation is x̃i [n] = (H ∗ xi)[n], where H[n] ∈ CL×L is
a filtering matrix common to all processes and ∗ denotes con-
volution, which when applied to zi becomes

z̃i = Gzi , (17)

where G is a block-diagonal matrix with invertible L× L
blocks. Additionally, we may label the processes in any arbitrary
order, which may be even done on a frequency-by-frequency ba-
sis. The last invariance consists of a frequency reordering. That
is, we may permute the frequencies, i.e., permute zi [k], provided
that the same permutation is applied to all processes. Then, the
group of invariant transformations for the hypothesis test in
(11) is

G =
{
g : z �→ g(z) = G̃z

}
, (18)

where

G̃ = (IP ⊗ G)

(
N∑

k=1

PT
k ⊗ ekeTk ⊗ IL

)

(IP ⊗ T ⊗ IL ),

(19)
with ek being the kth column of IN , Pk ∈ RP ×P and T ∈
RN×N. Moreover, the matrix IP ⊗ T ⊗ IL applies a frequency
reordering (permutation) to every process, G is a block-diagonal
matrix with L× L invertible blocks Gk , and Pk is a matrix
that permutes the kth frequency of all processes, i.e., permutes
the position of z1 [k − 1], . . . , zP [k − 1] in z. Then, Pk ∈ Pk ,

T ∈ T , and Gk ∈ G, where Pk and T are the set of permuta-
tion matrices formed by Pk and T, respectively, and G is the
set of L× L invertible matrices. In Appendix I, we prove that(∑N

k=1 PT
k ⊗ ekeTk ⊗ IL

)
z corresponds to the relabeling of

the processes at each frequency.
Equipped with the transformation group G, it is possible to

study the existence of the UMPIT. The typical approach [15]
involves finding the maximal invariant statistic and computing
its densities under both hypotheses. An alternative to this pro-
cess, which is usually very involved or even intractable, is based
on Wijsman’s theorem [16], [17], and allows us to derive the
UMPIT, if it exists, without finding the maximal invariant statis-
tic nor its distributions. This theorem directly gives the ratio of
the distributions of the maximal invariant statistic as follows

L =
∑

T ,P1 ,...,PN

∫

GN

|det(G)|2MP exp
{
−Mtr

(
S−1
H1

G̃ŜG̃H
)}
dG

∑

T ,P1 ,...,PN

∫

GN

|det(G)|2MP exp
{
−Mtr

(
S−1
H0

G̃ŜG̃H
)}
dG

,

(20)

where GN = G × · · · × G and dG is an invariant measure on
the set GN and the sum over Pk represents the sum over all per-
mutations matrices in the set Pk . If the ratio L , or a monotone
transformation thereof, did not depend on unknown parameters,
it would yield the UMPIT. When such dependence is present,
the UMPIT does not exist, and in that case it is sensible to con-
sider the case of close hypotheses to study the existence of the
LMPIT.

In the following, we will simplify the ratio L , show that the
UMPIT does not exist, and study the case of close hypotheses.
The next lemma presents the first simplification of L .

Lemma 1: The ratio L in (20) can be written as

L ∝
∑

T

∑

P1 ,...,PN

∫

GN

exp (−Mα(G))
N∏

l=1

β(Gl)dGl , (21)

where

α(G) =
N∑

k=1

P∑

i=1

tr
(
Wi,kGk Ĉπk [i],Π[k ]GH

k

)
, (22)

the matrix Ĉπk [i],Π[k ] is a permutation of the sample coherence
matrix

Ĉi,k =

[
1
P

P∑

p=1

Ŝp,k

]−1/2

Ŝi,k

[
1
P

P∑

p=1

Ŝp,k

]−1/2

, (23)

with

Ŝi,k+1 =
1
M

M−1∑

m=0

z(m )
i [k]z(m )H

i [k], (24)

being the sample estimate of the PSD matrix of {xi [n]}N−1
n=0 at

frequency 2πk/N . Moreover, the scalar β(Gl) is given by

β(Gl) = |det(Gl)|2MP exp
{−PMtr

(
GH
l Gl

)}
, (25)
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and the matrix Wi,k is

Wi,k =

(
1
P

P∑

p=1

S−1
p,k

)−1/2

S−1
i,k

(
1
P

P∑

p=1

S−1
p,k

)−1/2

− IL .

(26)
Proof: The proof is presented in Appendix II. �
As can be seen in (21), the ratio L depends on the matrices

Wi,k , which are unknown, proving that the UMPIT does not
exist. Hence, as previously mentioned, we focus hereafter on the
case of close hypotheses, i.e., the PSD matrices are very similar.
In this case, S1 ≈ · · · ≈ SP , which yields Wi,k ≈ 0. Under
this assumption, the exponent term in (21) becomes small and
allows us to perform a Taylor series expansion aroundα(G) = 0
as follows

exp(−Mα(G)) ≈ 1
2
(
2 − 2Mα(G) +M 2α2(G)

)
, (27)

which yields

L ∝ Ll + Lq , (28)

where the linear and quadratic terms are respectively given by

Ll = −2M
∑

T

∑

P1 ,...,PN

∫

GN

α(G)
N∏

l=1

β(Gl)dGl , (29)

and

Lq ∝M 2
∑

T

∑

P1 ,...,PN

∫

GN

α2(G)
N∏

l=1

β(Gl)dGl . (30)

Next, we analyze the linear term Ll .
Lemma 2: The linear term is zero, i.e.,

Ll = 0. (31)

Proof: The proof can be found in Appendix III. �
Since the linear term is zero, only the quadratic term has to

be taken into account. The final expression is provided in the
following theorem.

Theorem 1: The ratio of the distributions of the maximal
invariant statistic is given by

L ∝
N∑

k=1

P∑

i=1

∥
∥
∥Ĉi,k

∥
∥
∥

2

F
+ β

N∑

k=1

P∑

i=1

tr2
(
Ĉi,k

)
, (32)

where β is a data-independent function of the matrices Wi,k ,
which are unknown.

Proof: See Appendix IV. �
As Theorem 1 shows, the ratio L depends on unknown pa-

rameters, which are summarized in β. Hence, the LMPIT for
testing the equality of PSD matrices at all frequencies does not
exist in the general case. An exception is examined in the fol-
lowing section. Moreover, an LMPIT-inspired detector is also
presented in Section V, and its performance is analyzed using
computer simulations.

One final comment is in order. Since the ratio L is given by
a linear combination (with unknown weights) of the Frobenius
norm and the trace of Ĉi,k , the optimal detector would be a
function of the eigenvalues of Ĉi,k . This makes sense as the

distributions of these eigenvalues are not modified by any of the
invariances.

IV. THE LMPIT FOR UNIVARIATE TIME SERIES

The case of univariate time series, L = 1, is interesting since
the LMPIT does exist, as shown in the next corollary.

Corollary 1: For L = 1 the ratio in (32) reduces to

L ∝
N∑

k=1

P∑

i=1

∣
∣
∣Ĉi,k

∣
∣
∣
2
, (33)

which is therefore the LMPIT.
Proof: In the univariate case, the coherence matrices Ĉi,k

become scalar, that is, Ĉi,k = Ĉi,k , and consequently
∥
∥
∥Ĉi,k

∥
∥
∥

2

F
= tr2

(
Ĉi,k

)
=

∣
∣
∣Ĉi,k

∣
∣
∣
2
, (34)

which yields

L ∝ (1 + β)
N∑

k=1

P∑

i=1

∣
∣
∣Ĉi,k

∣
∣
∣
2
∝

N∑

k=1

P∑

i=1

∣
∣
∣Ĉi,k

∣
∣
∣
2
. (35)

�
Interestingly, using (10) and the definition of Ĉi,k in (23),

the LMPIT in Corollary 1 may be rewritten in a more insightful
form as

L ∝
N−1∑

k=0

P∑

i=1

Ŝ2
i

(
ejθk

)

[
P∑

i=1

Ŝi
(
ejθk

)
]2 , (36)

or asymptotically (as N → ∞)

L ∝
∫ π

−π

P∑

i=1

Ŝ2
i

(
ejθ

)

[
P∑

i=1

Ŝi
(
ejθ

)
]2

dθ

2π
. (37)

Thus, for L = 1, the LMPIT is given by the integral of the sum
of the squares of the PSD estimates normalized by the square of
their sum.

V. AN LMPIT-INSPIRED DETECTOR

Since the LMPIT does not exist in the multivariate case (L >
1), we present here an LMPIT-inspired detector. In particular,
we could use each of the terms in (32) as test statistics, which
are

LF =
N∑

k=1

P∑

i=1

∥
∥
∥Ĉi,k

∥
∥
∥

2

F
=

N−1∑

k=0

P∑

i=1

∥
∥
∥Ĉi

(
ejθk

)∥∥
∥

2

F
, (38)

and

LT =
N∑

k=1

P∑

i=1

tr2
(
Ĉi,k

)
=

N−1∑

k=0

P∑

i=1

tr2
(
Ĉi

(
ejθk

))
, (39)
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where the frequency coherence, Ĉi(ejθ ), was defined in (15).
Note that in the univariate case (L = 1), both (38) and (39)
reduce to the true LMPIT (33). However, for multivariate pro-
cesses we only propose LF as a detector and discard LF .
To understand why, let us analyze both. Considering the case
where all PSDs are identical (H0), the coherence matrices are
Ĉi(ejθ ) ≈ IL , ∀θ. Actually, for a large number of realizations,
M → ∞, they converge to Ĉi(ejθ ) = IL , ∀θ. Hence, to distin-
guish between both hypotheses, the detectors must measure how
different Ĉi(ejθ ) is from IL . This is exactly what the statistics
LF and LT do. The only difference resides in the way they
quantify this difference: while LF uses the Frobenius norm,
LT uses the trace. Since the Frobenius norm exploits informa-
tion provided by the cross-spectral densities of each multivariate
time series, information which is neglected by the trace operator,
one would expect LF to outperform LT .

Finally, as in Section IV, it is possible to write the asymptotic
versions of (38) as

LF =
∫ π

−π

P∑

i=1

∥
∥
∥Ĉi

(
ejθ

)∥∥
∥

2

F

dθ

2π
. (40)

A. Threshold Selection

In this section, we study the threshold selection problem for
the LMPIT-inspired detector LF . Similarly to the approaches
described for the GLRT, we could consider that the PSDs are
Si(ejθ ) = IL ,∀θ and i = 1, . . . , P , and use Monte Carlo simu-
lations to obtain the thresholds. Of course, due to the invariance
to MIMO filtering, these thresholds should be valid for other
PSDs. The second approach is also based on Wilks’ theorem,
but it cannot be directly applied. Concretely, we will follow
along the lines in [18]. First, for close hypotheses, the GLRT
may be approximated by

N−1∑

k=0

P∑

i=1

log det
(
Ĉi

(
ejθk

))
=
N−1∑

k=0

P∑

i=1

L∑

s=1

log
(
1+εi,s

(
ejθk

))

≈
N−1∑

k=0

P∑

i=1

L∑

s=1

(

εi,s
(
ejθk

)− ε2i,s
(
ejθk

)

2

)

, (41)

where 1 + εi,s(ejθk ) is the sth eigenvalue of Ĉi(ejθk ) and
|εi,s(ejθk | � 1. After some straightforward manipulations, the
above approximation becomes

N−1∑

k=0

P∑

i=1

log det
(
Ĉi

(
ejθk

)) ≈ NPL

2

+
N−1∑

k=0

P∑

i=1

L∑

s=1

(

2εi,s
(
ejθk

)−
(
1 + εi,s

(
ejθk

))2

2

)

,

(42)

Now, using (60), we get

P∑

i=1

L∑

s=1

εi,s
(
ejθk

)
= 0, (43)

which yields

− 2M
N−1∑

k=0

P∑

i=1

log det
(
Ĉi

(
ejθk

))

≈M

N−1∑

k=0

P∑

i=1

∥
∥
∥Ĉi

(
ejθk

)∥∥
∥

2

F
−MNPL. (44)

Hence, we obtain the following asymptotic distribution of LF

(MLF −MNPL) ∼ χ2
(P −1)NL2 . (45)

VI. NUMERICAL RESULTS

This section studies the performance of the proposed detec-
tor using Monte Carlo simulations, and compare it with that
of the GLRT. The performance evaluation is carried out in a
communication setup, where the signals are generated as

xi [n] =
T −1∑

τ=0

Hi [τ ]si [n− τ ] + vi [n], i = 1, . . . , P,

which corresponds to a MIMO channel with finite impulse re-
sponse. In this expression, the transmitted signals si [n] ∈ CQ

are independent multivariate processes whose entries are in-
dependent QPSK symbols with unit energy, the noise vectors
vi [n] ∈ CL are independent with variance σ2 , and spatially
and temporally white. The channel H1 [n] is a Rayleigh MIMO
channel with unit energy,2 spatially uncorrelated, and with ex-
ponential power delay profile of parameter ρ. Finally, Hi [n] =√

1 − ΔhH1 [n] +
√

ΔhEi [n], i = 2, . . . , P , with Ei [n] pos-
sessing the same statistical properties as H1 [n] and being in-
dependent. Under this model, Δh = 0 corresponds to signals
having the same PSD, that is H0 , and 0 < Δh ≤ 1 measures
how far the hypotheses are, along with the signal-to-noise ratio,
which is defined as

SNR (dB) = 10 log
(

1
σ2

)
. (46)

Experiment 1: In this first experiment, we have considered
P = 3 processes of dimension L = 3, Q = 1 signals are trans-
mitted through MIMO channels with T = 20 taps, the param-
eter of the exponential power delay profile is ρ = 0.75, and
Δh = 0.1 under H1 . Moreover, to carry out the detection, a re-
alization of 512 samples is available, which is then divided into
M = 4 windows of length N = 128. The probability of missed
detection for a fixed probability of false alarm pf a = 10−2 and
for a varying SNR is depicted in Fig. 1 . As this figure shows,
the proposed LMPIT-inspired detector, LF , outperforms the
GLRT, with an approximate gain of 2 dB.

Experiment 2: The setup of this experiment is equivalent to
that of Experiment 1, with the exception that Q = 3 signals are
transmitted. The results for this scenario are presented in Fig. 2 ,
where similar conclusions can be drawn. In this scenario, which
could be expected to be a bit more favorable for the GLRT,

2Each element of H1 [n] follows a proper complex Gaussian distribution with
zero mean and unit variance.
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Fig. 1. Probability of missed detection for Experiment 1: P = 3, L = 3,
Q = 1, T = 20, ρ = 0.75, Δh = 0.1, M = 4, and N = 128.

Fig. 2. Probability of missed detection for Experiment 2: P = 3, L = 3,
Q = 3, T = 20, ρ = 0.75, Δh = 0.1, M = 4, and N = 128.

since the true PSD matrices are full rank, the detector LF still
outperforms the GLRT.

Experiment 3: The third experiment considers P = 3 pro-
cesses of dimension L = 5, and Q = 5 signals are transmitted.
The channel parameters remain the same as in the two previous
experiments. However, in this case, 1024 samples are acquired,
which are divided into M = 8 windows of length N = 128. In
this case, the difference between the GLRT and the Frobenius
norm detector is reduced as Fig. 3 shows. This was expected
since, in this case, there is a larger M , which reduces the ac-
curacy of the second-order Taylor expansion in (27), i.e., the
assumption of close hypotheses begins to not hold true.

Experiment 4: The fourth experiment also analyzes the ef-
fect of the distance between the hypotheses. In particular, we
have obtained the probability of missed detection (pf a = 10−2)
for a varying Δh and two different SNRs, 0 and 5 dBs. In this
experiment, there are P = 2 processes of dimensionL = 3, and
Q = 3 signals are transmitted. The channel parameters remain

Fig. 3. Probability of missed detection for Experiment 3: P = 3, L = 5,
Q = 5, T = 20, ρ = 0.75, Δh = 0.1, M = 8, and N = 128.

Fig. 4. Probability of missed detection for Experiment 4: P = 2, L = 3,
Q = 3, T = 20, ρ = 0.75, M = 4, and N = 128.

the same as in the previous experiments with the exception
of Δh , and 512 samples are obtained, which are divided into
M = 4 realizations of length N = 128. The results for this ex-
periment are shown in Fig. 4, which demonstrates that the close
hypotheses assumption holds for many setups, where the detec-
tor LF still outperforms the GLRT.

Experiment 5: In the fifth experiment, we evaluate the effect
of N and M . Specifically, we have considered a scenario with
the same parameters of Experiment 1, with the exception of the
SNR, which is fixed to 3 dB, the length of the long realization and
how it is divided. Concretely, we have sweptN between 32 and
256 in steps of 16 samples, and considered M = 4 and M = 8.
Thus, a long realization of the appropriate length is generated
and divided according to the values ofN andM , that is, for each
point of the curves the total number of samples may be different.
Figure 5 shows the probability of missed detection for pf a =
10−2 , which shows that in this setup it is more convenient to
reduce the variance of the estimator (increaseM ) at the expense
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Fig. 5. Probability of missed detection for Experiment 5: P = 3, L = 3,
Q = 1, T = 20, ρ = 0.75, Δh = 0.1, and SNR = 3 dB.

Fig. 6. ROC curves for Experiment 6: P = 2, L = 30, Q = 3, T = 20,
ρ = 0.75, Δh = 0.1, SNR = −8 dB, M = 30, and N = 128.

of a lower resolution (smallN ). This can be seen if we compare
the probability of missed detection forN = 32 andM = 8 with
that ofN = 64 andM = 4. Both have same number of samples
MN = 256, but pm is smaller for M = 8, i.e., for LF we
have pm = 0.1346 against pm = 0.3454. Finally, note that this
analysis affects both, the GLRT and the proposed detector.

Experiment 6: This experiment evaluates the performance
of the detectors in a larger-scale scenario. Specifically, we
have considered P = 2 processes of dimension L = 30,Q = 3,
the MIMO channels have T = 20 taps, ρ = 0.75 and SNR =
−8 dB, Δh = 0.1 under H1 , and a long realization of 3840
samples is generated, which is then divided into M = 30 win-
dows of length N = 128. The receiver operating characteristic
(ROC) curve for both detectors is depicted in Figure 6 , which
shows the better performance of the proposed detector even in
this large-scale scenario.

Experiment 7: In this experiment, we evaluate the ac-
curacy of Wilks’ approximations for both, GLRT and the
LMPIT-inspired detector. Fig. 7 shows the accuracy of these

Fig. 7. Empirical cumulate distribution functions (ECDF) for Experiment 7:
P = 3, L = 4, Q = 4, T = 20, ρ = 0.75, M = 10, 20, . . . , 100, N = 64,
and SNR = 5 dB.

approximations for a scenario with P = 3 processes of dimen-
sion L = 4, andQ = 4 signals are transmitted. The channel pa-
rameters are those of Experiment 1 with an SNR = 5 dB. We
have considered a long realization (of the appropriate length)
that is divided into M = 10, 20, . . . , 100 windows of length
N = 64. As can be seen in the figure, the χ2 distribution ap-
proximates much better the distribution of LF than that of the
GLRT. That is, it seems to converge faster for the Frobenius
norm based detector than for the GLRT.

VII. CONCLUSIONS

This work has studied the existence of optimal invariant de-
tectors for testing whether P multivariate time series have the
same power spectral density (PSD) matrix at every frequency.
Specifically, our derivation shows that the uniformly most pow-
erful invariant test (UMPIT) for this problem does not exist.
Considering close hypotheses (i.e., similar PSD matrices), we
obtained the locally most powerful invariant test (LMPIT) for
the case of univariate time series, and showed that the LMPIT
does not exist in the multivariate case. Nevertheless, our deriva-
tion suggested one LMPIT-inspired detector for multivariate
time series, which outperforms previously proposed detectors
as shown by extensive numerical examples.

APPENDIX I
DERIVATION OF THE RELABELING MATRICES

Let us start by rewriting z as z = vec (Z), where

Z =

⎡

⎢
⎢
⎣

z1 [0] · · · zP [0]
...

. . .
...

z1 [N − 1] · · · zP [N − 1]

⎤

⎥
⎥
⎦

=
N∑

k=1

ek ⊗
[
z1 [k − 1] · · · zP [k − 1]

]
. (47)
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Relabeling the processes at the kth frequency corresponds to
permuting the colums of

[
z1 [k − 1] · · · zP [k − 1]

]
, that

is,
[
z1 [k − 1] · · · zP [k − 1]

]
Pk , where Pk is an arbitary

P × P permutation matrix. It is important to note that the per-
mutation matrix Pk depends on the frequency since we may
apply different relabelings at each frequency. The observations
after the N (possibly) different relabelings are given by

Z̃ =
N∑

k=1

ek ⊗
([

z1 [k − 1] · · · zP [k − 1]
]
Pk

)

=
N∑

k=1

(
ek ⊗

[
z1 [k − 1] · · · zP [k − 1]

])
Pk . (48)

Taking now into account that
[
z1 [k − 1] · · · zP [k − 1]

]
=

(
eTk ⊗ IL

)
Z, (49)

it is easy to show that

ek ⊗
[(

eTk ⊗ IL
)
Z
]

=
(
ek ⊗ eTk ⊗ IL

)
Z

=
(
ekeTk ⊗ IL

)
Z, (50)

which yields

Z̃ =
N∑

k=1

(
ekeTk ⊗ IL

)
ZPk . (51)

Finally, vectorizing Z̃ yields

z̃ = vec(Z̃) =

(
N∑

k=1

PT
k ⊗ ekeTk ⊗ IL

)

z. (52)

APPENDIX II
PROOF OF LEMMA 1

Since G̃ and SHi
are block-diagonal matrices with block size

L, we may substitute Ŝ in (20) by diagL (Ŝ) without modifying
the integrals. Before proceeding, we must define the block-
diagonal matrix

Ŝπ =
N∑

k,l=1

(
PT
k ⊗ ekeTk ⊗ IL

)
(IP ⊗ T ⊗ IL ) diagL (Ŝ)

× (IP ⊗ TT ⊗ IL )
(
Pl ⊗ eleTl ⊗ IL

)
, (53)

and, taking into account the effect of the permutations, it be-
comes

Ŝπ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ŝπ1 [1],Π[1] 0 · · · 0

0 Ŝπ2 [1],Π[2] · · · 0
...

...
. . .

...

0 0 · · · ŜπN [P ],Π[N ]

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (54)

where πk [·], k = 1, . . . , N, are possibly different permutations
of size P and Π[·] is a permutation of size N . That is, πk [·]
is the permutation associated to Pk , Pk → πk [·], and Π[·] is
the permutation associated to T, T → Π[·]. Applying now the
change of variables GΠ[k ] → GΠ[k ] [1/P

∑P
i=1 Ŝi,Π[k ] ]−1/2 to

the integrals in the numerator and denominator of (20), the ratio
L becomes

L =

∑

T

∑

P1 ,...,PN

∫

GN

|det(G)|2MP exp (−Mγ1) dG

∑

T

∑

P1 ,...,PN

∫

GN

|det(G)|2MP exp (−Mγ2) dG
,

(55)
where

γ1 = tr
(
S−1
H1

(IP ⊗ G) Ĉπ

(
IP ⊗ GH

))
, (56)

and

γ2 = tr
((

IP ⊗ GHS−1
0 G

)
Ĉπ

)
, (57)

with

Ĉπ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ĉπ1 [1],Π[1] 0 · · · 0

0 Ĉπ2 [1],Π[2] · · · 0
...

...
. . .

...

0 0 · · · ĈπN [P ],Π[N ]

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

(58)
where we have used (9). We continue by applying the change
of variables Gk → S1/2

0,k Gk to the integral in the denominator,
which simplifies γ2 to

γ2 = tr
((

IP ⊗ GHG
)
Ĉπ

)

=
N∑

k=1

tr

(

GH
k Gk

P∑

i=1

Ĉπk [i],Π[k ]

)

= P

N∑

k=1

tr
(
GH
k Gk

)
,

(59)

where we have taken into account that

P∑

i=1

Ĉi,k = P IL . (60)

Since this exponent does not depend on the observations, the
denominator may be discarded from the ratio. Let us now

consider the change of variables G → (
1/P

∑
i S

−1
i

)−1/2 G,
which yields

γ1 = tr
[
(W + I) (IP ⊗ G) Ĉπ

(
IP ⊗ GH

)]
, (61)

where

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

W1,1 0 · · · 0

0 W1,2 · · · 0
...

...
. . .

...

0 0 · · · WP,N

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (62)

with Wi,k defined in (26). The proof concludes by taking
(60) again into account and the block-diagonal structure of all
matrices. �
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APPENDIX III
PROOF OF LEMMA 2

The linear term Ll can be rewritten as

Ll = − 2MψN−1
∑

T

N∑

k=1

∑

P1 ,...,PN

P∑

i=1
∫

G
β(Gk )tr

(
Wi,kGk Ĉπk [i],Π[k ]GH

k

)
dGk , (63)

where

ψ =
∫

G
β(Gl)dGl , (64)

does not depend on l. Now, performing the sum over
P1 , . . . ,PN , Ll becomes

Ll = − 2[(P − 1)!]NMψN−1
∑

T

N∑

k=1

P∑

pk =1

P∑

i=1
∫

G
β(Gk )tr

(
Wi,kGk Ĉpk ,Π[k ]GH

k

)
dGk

= − 2[(P − 1)!]NMψN−1
∑

T

N∑

k=1

P∑

pk =1

∫

G
β(Gk )tr

[(
P∑

i=1

Wi,k

)

Gk Ĉpk ,Π[k ]GH
k

]

dGk ,

(65)

where for notational convenience

N∑

k=1

P∑

pk =1

=
N∑

k=1

P∑

p1 =1

· · ·
P∑

pN =1

, (66)

and we have taken into account that

∑

P

f(π[i]) = (P − 1)!
P∑

p=1

f(p), (67)

for permutations of size P and any arbitrary function f(·). The
proof follows from

P∑

i=1

Wi,k = 0, ∀k. (68)

�

APPENDIX IV
PROOF OF THEOREM 1

Exploiting the results of Lemma 2, the ratio of distributions
of the maximal invariant statistic simplifies to

L ∝
∑

T

∑

P1 ,...,PN

∫

GN

α2(G)
N∏

l=1

β(Gl)dGl , (69)

and expanding α2(G) yields

L ∝ L1 + L2 + L3 + L4 (70)

where the expressions of the terms in the right-hand side of
(70) are shown at the bottom of this page. After summing over
P1 , . . . ,PN and T , L1 becomes

L1 ∝
N∑

k,l=1

P∑

pk =1

P∑

i=1

∫

G
β(Gk )tr2

(
Wi,kGk Ĉpk ,lG

H
k

)
dGk .

(75)

L1 = ψN−1
∑

T

N∑

k=1

∑

P1 ,...,PN

P∑

i=1

∫

G
β(Gk )tr2

(
Wi,kGk Ĉπk [i],Π[k ]GH

k

)
dGk , (71)

L2 = ψN−2
∑

T

N∑

k,l=1
k �= l

∑

P1 ,...,PN

P∑

i=1

[∫

G
β(Gk )tr

(
Wi,kGk Ĉπk [i],Π[k ]GH

k

)
dGk

]

×
[∫

G
β(Gl)tr

(
Wi,lGlĈπl [i],Π[l]GH

l

)
dGl

]
, (72)

L3 = ψN−1
∑

T

N∑

k=1

∑

P1 ,...,PN

P∑

i,j=1
i �=j

∫

G
β(Gk )tr

(
Wi,kGk Ĉπk [i],Π[k ]GH

k

)
tr
(
Wj,kGk Ĉπk [j ],Π[k ]GH

k

)
dGk , (73)

L4 = ψN−2
∑

T

N∑

k,l=1
k �= l

∑

P1 ,...,PN

P∑

i,j=1
i �=j

[∫

G
β(Gk )tr

(
Wi,kGk Ĉπk [i],Π[k ]GH

k

)
dGk

]

×
[∫

G
β(Gl)tr

(
Wj,lGlĈπl [j ],Π[l]GH

l

)
dGl

]
. (74)
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Let us now consider L2 , which after summing over P1 , . . . ,PN ,
becomes

L2 ∝
∑

T

N∑

k,l=1
k �= l

P∑

pk =1

P∑

ql =1

P∑

i=1

×
[∫

G
β(Gk )tr

(
Wi,kGk Ĉpk ,Π[k ]GH

k

)
dGk

]

×
[∫

G
β(Gl)tr

(
Wi,lGlĈql ,Π[l]GH

l

)
dGl

]
. (76)

Carrying out the summations in pk and ql , and taking (60) into
account, the term L2 simplifies to

L2 ∝
∑

T

N∑

k,l=1
k �= l

P∑

i=1

[∫

G
β(Gk )tr

(
Wi,kGkGH

k

)
dGk

]

×
[∫

G
β(Gl)tr

(
Wi,lGlGH

l

)
dGl

]
, (77)

which does not depend on the observations and therefore
can be discarded. We shall now focus on L3 , which can be
rewritten as

L3 ∝
∑

T

N∑

k=1

P∑

pk =1

P∑

qk =1
pk �=qk

P∑

i,j=1
i �=j

×
∫

G
β(Gk )tr

(
Wi,kGk Ĉpk ,Π[k ]GH

k

)

× tr
(
Wj,kGk Ĉqk ,Π[k ]GH

k

)
dGk , (78)

since

∑

P

f(π[i])g(π[j]) = (P − 2)!
P∑

p,q=1
p �=q

f(p)g(q), (79)

for permutations of size P , i �= j, and two arbitrary functions
f(·) and g(·). The expression for L3 simplifies to

L3 ∝
∑

T

N∑

k=1

P∑

pk =1

P∑

i,j=1
i �=j

∫

G
β(Gk )tr

(
Wi,kGk Ĉpk ,Π[k ]GH

k

)

× tr
(
Wj,kGk

(
P I − Ĉpk ,Π[k ]

)
GH
k

)
dGk , (80)

after summing in qk and taking into account that

P∑

qk =1
pk �=qk

Ĉqk ,Π[k ] = P IL − Ĉpk ,Π[k ]. (81)

Finally, expanding the second trace and summing over pk and j
yields

L3 ∝
N∑

k,l=1

P∑

pk =1

P∑

i=1

∫

G
β(Gk )tr2

(
Wi,kGk Ĉpk ,lG

H
k

)
dGk ,

(82)

which is identical (up to a multiplicative and additive constants)
to L1 . Summing over P1 , . . . ,PN , the term L4 becomes

L4 ∝
∑

T

N∑

k,l=1
k �= l

P∑

pk =1

P∑

ql =1

P∑

i,j=1
i �=j

×
[∫

G
β(Gk )tr

(
Wi,kGk Ĉpk ,Π[k ]GH

k

)
dGk

]

×
[∫

G
β(Gl)tr

(
Wj,lGlĈql ,Π[l]GH

l

)
dGl

]
, (83)

which reduces to

L4 ∝
∑

T

N∑

k,l=1
k �= l

P∑

i,j=1
i �=j

[∫

G
β(Gk )tr

(
Wi,kGkGH

k

)
dGk

]

×
[∫

G
β(Gl)tr

(
Wj,lGlGH

l

)
dGl

]
, (84)

after summing over pk and ql , and taking (60) into account. It is
clear that L4 does not depend on the observations and therefore
can be discarded. Then, combining all Li , we obtain

L ∝
N∑

k,l=1

P∑

pk =1

P∑

i=1

∫

G
β(Gk )tr2

(
Wi,kGk Ĉpk ,lG

H
k

)
dGk .

(85)
Applying the change of variables Gk → Vi,kGkUH

pk ,l
, with

Ĉpk ,l = Upk ,lΣpk ,lU
H
pk ,l

and Wi,k = Vi,kΛi,kVH
i,k being the

eigenvalue decompositions of Ĉpk ,l and Wi,k , yields

L ∝
N∑

k,l=1

P∑

pk =1

P∑

i=1

∫

G
β(Gk )tr2 (GH

k Λi,kGkΣpk ,l

)
dGk .

(86)
Now, expressing the trace as

tr
(
GH
k Λi,kGkΣpk ,l

)
= σT

pk ,l
G̃kλi,k , (87)

where σpk ,l = diag(Σpk ,l), λi,k = diag(Λi,k ), and [G̃k ]m,n =
|[Gk ]m,n |2 , the ratio becomes

L ∝
N∑

k,l=1

P∑

pk =1

P∑

i=1

σT
pk ,l

Ei,kσpk ,l , (88)

where

Ei,k =
∫

G
β(Gk )G̃kλi,kλ

T
i,kG̃

T
k dGk . (89)

The quadratic form σT
pk ,l

Ei,kσpk ,l is invariant to permutations3

of the elements of σpk ,l , then Ei,k must be of the form

Ei,k = ēi,kI + ẽi,k11T , (90)

3This permutation is an element of the set G, i.e., particular case of the
multiplication by Gk .
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yielding

L ∝
N∑

k,l=1

P∑

pk =1

P∑

i=1

σT
pk ,l

(
ēi,kI + ẽi,k11T

)
σpk ,l

=
N∑

k,l=1

P∑

pk =1

P∑

i=1

(
ēi,k

∥
∥
∥Ĉpk ,l

∥
∥
∥

2
+ ẽi,k tr2

(
Ĉpk ,l

))

=
N∑

k,l=1

P∑

pk =1

(
ēk

∥
∥
∥Ĉpk ,l

∥
∥
∥

2
+ ẽk tr2

(
Ĉpk ,l

))
, (91)

where

ēk =
P∑

i=1

ēi,k , ẽk =
P∑

i=1

ẽi,k . (92)

The proof concludes by rewriting L as

L ∝ ē

N∑

l=1

P∑

pk =1

∥
∥
∥Ĉpk ,l

∥
∥
∥

2
+ ẽ

N∑

l=1

P∑

pk =1

tr2
(
Ĉpk ,l

)
, (93)

where

ē =
N∑

k=1

ēk ẽ =
N∑

k=1

ẽk , (94)

dividing (93) by ē and defining β = ẽ/ē. �
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Roberto López-Valcarce (S’95–M’01) received the
telecommunication engineering degree from the Uni-
versity of Vigo, Vigo, Spain, in 1995, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Iowa, Iowa City, IA, USA, in 1998 and
2000, respectively. In 1995, he was a Project Engi-
neer with Intelsis, Santiago de Compostela, Spain. He
was a Ramn y Cajal Postdoctoral Fellow of the Span-
ish Ministry of Science and Technology from 2001
to 2006. During that period, he was with the Signal
Theory and Communications Department, University

of Vigo, where he is currently an Associate Professor. From 2010 to 2013, he
was a Program Manager with the Galician Regional Research Program on In-
formation and Communication Technologies with the Department of Research,
Development and Innovation. He has coauthored over 60 papers in leading in-
ternational journals and holds several patents in collaboration with the industry.
His research interests include adaptive signal processing, digital communica-
tions, and sensor networks.
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