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Abstract— In spectrum sensing for cognitive radio, the pres-
ence of a primary user can be detected by making use of the
cyclostationarity property of digital communication signals. For
the general scenario of a cyclostationary signal in temporally col-
ored and spatially correlated noise, it has previously been shown
that an asymptotic generalized likelihood ratio test (GLRT) and
locally most powerful invariant test (LMPIT) exist. In this paper,
we derive detectors for the presence of a cyclostationary signal in
various scenarios with structured noise. In particular, we consider
noise that is temporally white and/or spatially uncorrelated.
Detectors that make use of this additional information about the
noise process have enhanced performance. We have previously
derived GLRTs for these specific scenarios; here, we examine
the existence of LMPITs. We show that these exist only for
detecting the presence of a cyclostationary signal in spatially
uncorrelated noise. For white noise, an LMPIT does not exist.
Instead, we propose tests that approximate the LMPIT, and they
are shown to perform well in simulations. Finally, if the noise
structure is not known in advance, we also present hypothesis
tests using our framework.

Index Terms— Cyclostationarity, detection, generalized likeli-
hood ratio test (GLRT), interweave cognitive radio, locally most
powerful invariant test (LMPIT), spectrum sensing.

I. INTRODUCTION

DETECTION of cyclostationarity has received renewed
attention in recent years. A particularly interesting appli-

cation is interweave cognitive radio [1]. This technology
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contributes to a more efficient use of the electromagnetic
spectrum by sensing wireless channels, such that unlicensed
secondary users can opportunistically access radio resources.
The signal transmitted by the primary user is unknown to the
secondary user, but nevertheless the detection has to perform
reliably even for low SNR.

For the detection of a primary user in noise, there exist
many models and corresponding tests (e.g. [2]–[8]). Existing
detectors include energy detectors (e.g. [2], [3], [7], [8]),
eigenvalue detectors (e.g. [5], [7]), correlation-based detectors
(e.g. [2], [4], [7], [8]) and others. Some detectors are based
on the generalized likelihood ratio test (GLRT), and many
assume white noise. Which detector is applicable for a partic-
ular scenario depends on the information available about the
primary-user signal. A more general scenario was considered
in [9], where the noise is allowed to be spatially uncorrelated
and temporally colored. These papers, however, do not exploit
the prior information that the signal of interest is a digital
communication signal, which is cyclostationary (e.g. [10]),
while the noise is wide-sense stationary (WSS). This enables
us to build better detectors by detecting this cyclostationarity
feature. If it cannot be found, we conclude that only noise
is present. For an introduction to cyclostationarity in general,
and its detection in particular, the reader is referred to the
papers [1], [11]–[14].

Early detectors for cyclostationarity were developed in [12]
and [15]-[17], and since cognitive radio has become a pop-
ular idea, more detectors have been proposed, e.g. [18]–[20].
Recent publications have also proposed detectors for particular
classes of primary-user signals, for example BPSK [21],
OFDM [22], and GFDM [23]. Our goal in this paper is to
develop detectors of cyclostationarity for arbitrary modulation
schemes. A problem related to the detection of signals is the
identification of the modulation scheme, where it also is pos-
sible to utilize the cyclostationarity feature of communications
signals [24]–[27].

The classical detector for the presence of cyclostationarity is
given in [16] and similar detectors for observations from multi-
ple antennas are proposed in [18] and [19]. These detectors test
whether cycles are present in the autocorrelation function for
a specified set of lags. The tests from [12], [17], [20], and [28]
use the fact that spectral components of a cyclostationary
process are correlated for some lags/frequencies. The choice
of these lags is commonly optimized in advance, but this may
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not be possible in a cognitive radio framework, where we do
not have prior information about the signal of the primary user.

A different family of detectors, where only the cycle period
needs to be known, was derived in [29] and [30]. These detec-
tors can inherently deal with observations from multiple anten-
nas, but they are based on the assumption of having available
independent complex normally-distributed observations. This
assumption may sound restrictive at first, but it enables the use
of powerful statistical methods. While normality is necessary
to derive the detectors, the covariance matrices need not be
known. In practice, independently distributed observations can
be approximately obtained by chopping one long observation
into multiple short observations. The detectors in [29] and [30]
are an asymptotic GLRT and an asymptotic locally most
powerful invariant test (LMPIT) for a low-SNR scenario.
Interestingly, both tests are different functions of the same
coherence matrix. Further, both proposed detectors outperform
classical detectors even when applied to the detection of
communication signals, which are not Gaussian.

While these detectors assume arbitrarily colored and spa-
tially correlated noise under the null hypothesis, the noise
might have further structure in the context of cognitive radio.
In a properly calibrated system, noise is temporally white and
spatially uncorrelated, which is commonly assumed. Yet cali-
bration may also fail in either one of these domains, leading to
noise that is only temporally white or spatially uncorrelated.
In this paper, we treat all possible cases, i.e., temporally
white and/or spatially uncorrelated noise. These scenarios were
already considered in [31], which derived GLRTs for each of
them. It turns out that the GLRTs are again a function of a
coherence matrix, but the coherence matrix is defined differ-
ently from [30] in order to account for the additional structure
of the noise. Other tests for the detection of a cyclostationary
process in white noise were developed by [32] and [33]. For
the case of white noise, the proposed GLRT of [31] results in
a substantially improved performance compared to either the
GLRTs in [30] or the general-noise detectors in [18] and [20].
Our paper investigates the existence of (locally) optimal tests
for the same assumptions about the noise as in [31], i.e. for
temporally white and/or spatially uncorrelated noise.

A. Contributions

The main contributions of this paper can be summarized as
follows:

1) We propose detectors for an arbitrary cyclostationary
signal with known cycle period in noise that is tempo-
rally white and/or spatially uncorrelated. By incorporat-
ing the additional information about the noise into our
model, we are able to derive detectors with improved
performance. Our detectors do not require knowledge
of the signal parameters.

2) We investigate whether locally (i.e. low-SNR) optimal
tests, that is, LMPITs, exist for these scenarios. For
temporally colored but spatially uncorrelated noise the
LMPIT exists, and we derive its closed-form expression.
For temporally white noise, such a test does not exist as
it depends on unknown quantities. Instead we propose

LMPIT-inspired tests. For all tests we derive an approxi-
mate distribution under the null hypothesis, which allows
us to choose the thresholds of the tests.

3) We give an interpretation of our LMPIT-inspired tests
in terms of the cyclic spectrum. We show that our
detectors use the cyclic coherence function, generalized
to multiple antennas/time series, and show how they
utilize different cyclic frequencies.

4) We validate our detectors in simulations using different
setups for the signal and noise. We show that the LMPIT
for spatially uncorrelated noise outperforms both the
GLRT and the LMPIT for correlated noise. For tem-
porally white noise, we demonstrate that our proposed
tests also outperform other state-of-the-art detectors.
Furthermore we evaluate the computational complexity
of our detectors.

B. Outline
Our program for this paper is the following: In Section II,

we formulate the problem and an asymptotic approximation
thereof. Then we derive the structure of the hypothesis test
for the various noise assumptions. We review the GLRTs for
these problems in Section III. In Section IV, we analyze the
existence of LMPITs for the different scenarios. Based on
these results, we propose LMPIT-inspired detectors for the
case of temporally white noise (Section V). All proposed tests
are evaluated and compared to state-of-the-art detectors by
numerical simulations in Section VI. We derive the compu-
tational complexity of our detectors in Section VII. Finally,
in Section VIII, we propose tests to determine the spatial and
temporal structure of the noise, which can be used to select
the appropriate test for cyclostationarity.

II. PROBLEM FORMULATION

We consider the detection of a discrete-time cyclostationary
signal with known cycle period P ∈ N \ {1} in the pres-
ence of noise with spatio-temporal structure.1 Denoting the
observations from L time series by the vector x[n] ∈ C

L,
cyclostationarity means that the autocorrelation function is
periodic in the global time variable n:

E
[
x[n]xH [n − k]

]
:= M[n, k] = M[n + P, k]. (1)

We stack NP consecutive samples of x[n] into the vector

y =
[
xT [0], . . . , xT [NP − 1]

]T
. (2)

Based on y, the goal is to decide whether or not the observed
process is cyclostationary. We assume that x[n], and thus y,
is a proper complex Gaussian random variable with zero mean.
The covariance matrix R = E

[
yyH

]
of y depends on the

autocorrelation sequence M[n, k]:

R=

⎡

⎢
⎣

M[0, 0] . . . M[0,−NP + 1]
...

. . .
...

M[NP − 1, NP − 1] . . . M[NP − 1, 0]

⎤

⎥
⎦. (3)

1If the cycle period is not known in advance, it can be estimated, for example
with the estimators in [16] and [34]. Making our detectors robust against cycle-
period mismatch is beyond the scope of this paper but it could possibly be
achieved following along the lines of [35]. Other existing robust solutions can
be found in [36]–[38].
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Fig. 1. Structure of the covariance matrices, with L = 3, P = 2, and N = 3. Case I is temporally colored and spatially uncorrelated noise, case II is white
and correlated noise, and case III is white and uncorrelated noise.

Any additional information about M[n, k] will result in a
particular structure of the covariance matrix R.

Regarding the observation x[n], we have two scenarios:
Either a signal is present and then x[n] is cyclostation-
ary, or only noise is observed and then x[n] is WSS. This
is described by the hypotheses

H1 : x[n] is cyclostationary,

H0 : x[n] is WSS, and additionally temporally white

and/or spatially uncorrelated. (4)

“Spatial” correlation has to be interpreted as the correlation
between the different time series in the vector x[n]. Because
of the Gaussian assumption, we use the following equivalent
formulation of (4) in terms of the covariance matrix of y:

H1 : y ∼ CN (0,R1)
H0 : y ∼ CN (0,R0), (5)

where CN denotes the proper complex Gaussian distribution.
Thus the hypotheses only differ in the covariance matrix, and
we are therefore interested in the structure of R1 and R0.
To determine this structure, we define the autocorrelation
functions of x[n] for the respective hypotheses as

M1[n, k] := EH1

[
x[n]xH [n − k]

]
(6a)

M0[k] := EH0

[
x[n]xH [n − k]

]
. (6b)

Under H1, the cyclostationarity of the signal means that
M1[n, k] is periodic in n:

M1[n, k] = M1[n + P, k], (7)

where P is the cycle period. This periodicity causes the
covariance matrix R1 to be block-Toeplitz with block-size
LP [30], [39].

Under the null hypothesis, the considered spatio-temporal
information about the noise process results in distinct prop-
erties of M0[k]: In the case of spatially uncorrelated noise,
M0[k] is diagonal for all k. White noise results in an M0[k]
that is zero except for the lag k = 0. If the noise is temporally
white and spatially uncorrelated, we further know that M0[0]
is diagonal. In terms of the covariance matrix R0, all consid-
ered scenarios of the noise result in a block-Toeplitz R0, with
block-size L [31]: In the case of spatially uncorrelated noise,
all L×L blocks will be diagonal. For temporally white noise,
the matrix R0 becomes block-diagonal and the combination

of white and uncorrelated noise will cause the whole matrix
to be diagonal.

We could now test between the two hypotheses based
on the structure of the covariance matrix, if the correlation
functions (6), or equivalently, R1 and R0, were completely
known. However, since we do not have any knowledge about
them (besides the structure), this is a composite hypothesis
test. Common approaches for this type of test are the GLRT,
the uniformly most powerful invariant test (UMPIT), or the
LMPIT. For the particular case of the GLRT, this poses a
problem because closed-form maximum likelihood (ML) esti-
mates of block-Toeplitz matrices do not exist [40]. Therefore,
we follow the approach from [30], where we approximate
the block-Toeplitz matrices R0 and R1 as block-circulant
matrices, denoted by Q0 and Q1. This means that Q0 and Q1

can be block-diagonalized by DFT matrices, and thus be
estimated in closed form. For this, the vector y is transformed
into the frequency domain using

z = (LNP,N ⊗ IL) (FNP ⊗ IL)H y, (8)

where LNP,N is the commutation matrix, defined such that
vec (A) = LNP,N vec

(
AT

)
for a P × N matrix A [41].

Further, FNP is the NP -dimensional DFT-matrix, and ⊗
denotes the Kronecker product. The linear transformation (8)
then block-diagonalizes Q0 and Q1, and we can express the
hypotheses as

H1 : z ∼ CN (0,S1)
H0 : z ∼ CN (0,S0). (9)

The transformation (8) is designed such that the covariance
matrix of z becomes asymptotically (for N → ∞) block-
diagonal under both hypotheses. The covariance matrix S1 has
diagonal blocks of size LP × LP , and S0 is block-diagonal
with blocks of size L × L [30]. As before, we obtain further
structure under H0 depending on the assumption about the
noise: For the case of spatially uncorrelated and temporally
colored noise, the whole matrix S0 becomes diagonal (case I).
For white and spatially correlated noise (case II), the diagonal
blocks are identical and thus S0 can be factorized as INP ⊗S̃0,
where the matrix S̃0 is unknown. In the case of temporally
white and spatially uncorrelated noise, these blocks are also
diagonal (case III) [31]. The structure of the covariance
matrix S0 for all considered cases is illustrated in Figure 1.
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A. Comparison With Related Problems
For temporally colored but spatially uncorrelated noise,

the hypotheses in (9) differ only in the block-size of the
covariance matrices. An LMPIT for hypotheses with such a
structure was already derived in [30], so the results can be
immediately applied to this problem. More details will be
presented in Section IV-A.

For the case of temporally white noise, the covariance
matrix is block-diagonal under H1 and H0, and the block-sizes
are LP and L, respectively. Under H0, however, the blocks
are identical. Apart from this structure, the only additional
information we have is that all blocks are positive definite.
In a related paper for the detection of cyclostationarity in
WSS noise [30], the structure is very similar, but under H0,
the blocks are not identical.

At the same time, the structure of the white-noise scenario
is related to another problem, where the covariance matrix
is positive definite under H1 and block-diagonal with the
same positive definite blocks under H0. This scenario was
considered in [42], and the present problem is a generalization
thereof. For the special case of N = 1, the two problems are
identical. However, for N > 1 this problem is much more
difficult and, as we will show, the LMPIT does not exist.

III. GLRTS FOR STRUCTURED NOISE

In this section, we review the GLRTs for detecting a cyclo-
stationary signal in WSS noise with further spatio-temporal
structure. We originally derived these in [31], and here we
also present a way to set the threshold of the tests to achieve
a particular probability of false alarm.

To apply the GLRT to observed data, we assume to have
M ≥ LP independent and identically distributed (i.i.d.)
realizations zi of the vector z. In practice, often there is
only one observation available. In such a case, we would
split the whole observation (assumed to be of length MNP )
into M signals of length NP . Formally, this violates the
assumption of independence, but as we will show in later sim-
ulations, this does not affect the performance much. Splitting
the whole observation into segments can be interpreted in light
of Bartlett’s method of estimating the (cyclic) power spectral
density [43], [44]. It sacrifices resolution in the frequency
domain in order to decrease the variance of the estimators.
The ratio between M and N thus controls the tradeoff between
these two effects.

For the generalized likelihood ratio, which is defined as

LG =
max
S0

p(z1, . . . , zM ;S0)

max
S1

p(z1, . . . , zM ;S1)
, (10)

we need the ML estimates of the unknown covariance
matrices. They depend on the sample covariance matrix

Ŝ =
1
M

M−1∑

i=0

zizH
i . (11)

The ML-estimate of S1 is [30]

Ŝ1 = diagLP (Ŝ), (12)

TABLE I

ESTIMATE OF S0 FOR DIFFERENT NOISE ASSUMPTIONS

TABLE II

DEGREES OF FREEDOM OF THE χ2-DISTRIBUTION

where the diagB(·) operator returns the diagonal blocks of
size B and sets the off-diagonal blocks to zero. For the case
of B = 1, we will use diag(·). Under H0, the likelihood
function can be written as

π−LMNP
NP−1∏

k=0

(
detS(k,k)

0

)−M

× exp

{

−M tr

(
NP−1∑

k=0

(
S(k,k)

0

)−1

Ŝ(k,k)

)}

(13)

for all cases, where (·)(k,k) denotes the (k, k)th L × L
block of a matrix. For matrix blocks and elements, we use
indexing starting from zero. Depending on the structure of the
noise, the blocks S(k,k)

0 have further structure, as outlined in
Section II. This leads to the ML estimates of S0 as derived
in [31] and listed in Table I. The case of temporally colored
and spatially correlated noise was covered in [30] and is listed
for the sake of completeness.

With these estimates plugged into (10), the GLRTs for the
different scenarios can all be expressed as

LG ∝ det(Ĉ)
H0

≷
H1

η, (14)

with the sample coherence matrix

Ĉ = Ŝ−1/2
0 Ŝ1Ŝ

−1/2
0 . (15)

For the interpretation of the blocks of Ĉ in terms of the
cyclic power spectral density (PSD), see the remarks in
[30, Section VI]. The threshold η can be obtained for a given
false alarm rate using Wilks’ theorem [30], [45]: According
to Wilks, −2M log det(Ĉ) is asymptotically χ2-distributed
under the null hypothesis, with degrees of freedom depending
on the number of parameters to be estimated under the two
hypotheses. For the cases considered in this paper, the degrees
of freedom are listed in Table II.
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IV. LMPITS FOR STRUCTURED NOISE

As in [30] and [42], we use Wijsman’s theorem [46] to
find an expression for the LMPIT. With this theorem, it is
possible to express the likelihood ratio of the maximal invari-
ant statistic without the distributions of the maximal invariant
statistic. If the resulting expression only depends on known
quantities or observations, we obtain a UMPIT [47]. If this is
not the case, we can seek approximations in order to find an
LMPIT, which is only locally optimal. Such an LMPIT for the
case of a multivariate cyclostationary process in WSS noise
with arbitrary spatio-temporal correlations was derived in [30].
In the following subsections, we discuss the case where more
specific information about the noise is available.

A. LMPIT for Temporally Colored and Spatially
Uncorrelated Noise

In the case of temporally colored and spatially uncorrelated
noise, we test between two block-diagonal covariance matrices
that differ only in their block-size. In [30], the LMPIT was
derived for two arbitrary block sizes and here it is applied to
our problem. Hence the statistic of the LMPIT is

Lu =
∥
∥∥
∥
(
diag(Ŝ)

)−1/2

Ŝ1

(
diag(Ŝ)

)−1/2
∥
∥∥
∥

2

F

, (16)

where ‖·‖F denotes the Frobenius norm of a matrix. The
LMPIT is obtained by comparing Lu with a threshold ηu:

Lu

H1

≷
H0

ηu. (17)

As for the tests in [30], M(Lu − LNP ) is approximately
χ2-distributed under the null hypothesis, with the same degrees
of freedom as the GLRT in Table II, i.e. LNP (LP − 1).

B. LMPIT for Temporally White and Spatially Correlated
Noise

If the noise is assumed to be temporally white and spatially
correlated, the covariance matrix under the null hypothesis
is block-diagonal with identical blocks of size L. As before,
the structure of the covariance matrix under the alternative
hypothesis is block-diagonal with block-size LP . To find
an optimal invariant test for this scenario using Wijsman’s
theorem [46], we first need to identify the problem invariances
as a group. For the structure of the covariance matrix under
the hypotheses as listed in Section II, the group G is

G = {z → g(z) : g(z) = (P ⊗ Q⊗ G) z}, (18)

where P is an N×N permutation matrix, Q is a P×P unitary
matrix, and G is an L × L nonsingular matrix. To keep the

notation concise, we define G̃ = P⊗Q⊗G, and the sets of
permutation, unitary, and nonsingular matrices are denoted by
P, Q, and G, respectively.

A transformation from this group leaves the structure of
the hypotheses unchanged and can be interpreted as follows:
Since the covariance matrix is block-diagonal with unknown
LP × LP blocks under both hypotheses (see Section II
and Figure 1), the blocks on the diagonal can be permuted
arbitrarily without changing the block-diagonal structure. This
is captured by the matrix P and represents a frequency
reordering. To see the effect of (Q⊗ G), we have to look
at the structure of the diagonal LP × LP blocks of S under
the two hypotheses, i.e. either S0 or S1. If we denote their jth
block by Sj , then the group action transforms this block to

(Q⊗ G)Sj

(
QH ⊗ GH

)
. (19)

Under H1, Sj is an unknown and unstructured matrix, and
this is not affected by the group action. Under H0, the block
Sj is itself a block-diagonal matrix, with identical blocks on
the diagonal, i.e. it can be written as IP ⊗A. Then, according
to (19), the transformed block becomes IP ⊗GAGH , which is
still block-diagonal with identical blocks (transformed by G)
on the diagonal.

Applying Wijsman’s theorem, we obtain (20), as shown at
the bottom of this page for the ratio of the distributions of the
maximal invariant statistic. This expression is now simplified
and similar to the GLRT in (14), Equation (20) can be written
as a function of the sample coherence matrix Ĉ:

Lemma 1: The ratio of the distributions of the maximal
invariant statistic (20) can be written as

L ∝
∑

P

∫

Q

∫

G

β (G) e−α dG dQ , (21)

with α defined as

α = M tr
(
WĈ

)
, (22)

which is a function of the observations and the matrices
forming the group G as follows:

Ĉ = Ŝ−1/2
0 Ŝ1Ŝ

−1/2
0 , (23)

Ŝ0 = INP ⊗ 1
NP

N−1∑

j=0

P−1∑

k=0

Ŝ(k,k)
j , (24)

W = G̃H(S̃1 − I)G̃ , (25)

S̃1 = (INP ⊗ S̄−1/2
1 )S−1

1 (INP ⊗ S̄−1/2
1 ) , (26)

S̄1 =
1

NP

N−1∑

j=0

P−1∑

k=0

S(k,k)
1,j , (27)

β (G) = |detG|2MNP exp
{
−MNP tr

(
GGH

)}
. (28)

L =

∑

P

∫

Q

∫

G

det(S1)−M |detG|2MNP exp
{
−M tr

(
S−1

1 G̃ŜG̃H
)}

dG dQ

∑

P

∫

Q

∫

G

det(S0)−M |detG|2MNP exp
{
−M tr

(
S−1

0 G̃ŜG̃H
)}

dG dQ
(20)
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Proof: Please refer to Appendix A.
Since the expression in (21) depends on the unknown

parameters in S̃1, a UMPIT does not exist. We can, however,
approximate the exponential term for a low-SNR scenario [48]
and check if the integral depends on unknowns. If it does not,
then we have found an LMPIT. For low SNR (or more general:
close hypotheses), we obtain S̃1 ≈ I and thus α ≈ 0. This
approximation is used to perform a Taylor series expansion of
exp(−α) around α = 0:

exp(−α) ≈ 1 − α +
1
2
α2. (29)

By continuing with this approximation, we can no longer
obtain a globally optimal test. All the remaining results will
hold only approximately for a low SNR condition, which
is particularly interesting for a cognitive radio application.
Plugging this approximation into (21), we obtain a sum of
three terms, where the constant term can be discarded as
it does not depend on the data. The remaining linear and
quadratic terms will be dealt with in the following two lemmas.

Lemma 2: The linear term
∑

P

∫

Q

∫

G

β(G) tr
(
WĈ

)
dG dQ (30)

in the Taylor series expansion of (21) is constant with respect
to observations.

Proof: Please refer to Appendix B.
Since the linear term does not depend on data, we can

neglect it for the expression of the LMPIT. Consequently,
we simplify the approximation of (21) by keeping only the
quadratic term, i.e.

L ∝
∑

P

∫

Q

∫

G

β(G) tr2
(
WĈ

)
dG dQ. (31)

This term can be expressed in terms of the diagonal
blocks Ĉj of Ĉ as stated in the following lemma:

Lemma 3: For N > 1, the quadratic term in (31) in the
Taylor series expansion of (21) can be written as

L ∝
N−1∑

j=0

‖Ĉj‖2
F + λP

N−1∑

j=0

‖ ˆ̄Cj‖2
F + μN‖Ĉav‖2

F , (32)

with

ˆ̄Cj =
1
P

P−1∑

k=0

Ĉ(k,k)
j , (33)

Ĉav =
1
N

N−1∑

j=0

Ĉj , (34)

where Ĉ(k,k)
j denotes the kth L × L sub-block of the jth

block Ĉj . The scalar quantities λ and μ are constant with
respect to observations, but they depend on unknown quantities
in W and S̃1, respectively.

Proof: Please refer to Appendix C.
Since this expression still depends on unknown quantities,

the LMPIT does not exist.

C. LMPIT for Temporally White and Spatially
Uncorrelated Noise

First we observe that the structure of S0 is very similar
for temporally white noise that is either spatially corre-
lated or uncorrelated. In both cases, the matrix is block-
diagonal with repeating blocks. While the blocks are just
positive definite matrices for correlated noise, these blocks
become diagonal with positive diagonal elements for uncorre-
lated noise. If the noise is assumed spatially uncorrelated, this
constrains G from the group of invariances in (18) to become
diagonal with nonzero diagonal elements. The derivation of
the ratio of the distributions of the maximal invariant statistic
follows as in Section IV-B, while considering the additional
constraint. In the end, the test statistic can be written as in (32)
if we replace

Ŝ0 → diag(Ŝ0) (35)

and use (15) to obtain the coherence matrix. For the same
reason mentioned in the previous section, an LMPIT does not
exist for this scenario, either.

V. LMPIT-INSPIRED TESTS FOR WHITE NOISE

For a theoretical analysis of the test statistic (32), we need
its probability density function (pdf). Since it seems very dif-
ficult to derive the pdf, we perform Monte Carlo simulations,
in order to analyze how the test statistic (32) performs if we
use a grid of values for the unknown quantities λ and μ. This
can be done only in simulations where we know whether a sig-
nal is present or not. Testing multiple values of the parameters
cannot be done in a real-world application. However, this kind
of simulation can reveal which of the terms contribute most
(on average) towards a good detector. In particular, we answer
two questions: How do the detectors based on the individual
terms in (32) perform? How do these tests perform compared
to the white-noise GLRT (14) and the test based on (32)
with optimized values of λ and μ? The performance of a
test will be measured by the area under the receiver operating
characteristic (ROC) curve.

For all simulations, the observations are generated as

H1 : x[n] = (H ∗ s)[n] + w[n]
H0 : x[n] = w[n], (36)

where s[n] is a baseband QPSK signal with rectangular pulse
shaping. A new symbol is drawn every T samples, which
causes the cycle period of s[n] to be P = T . The operation
(H ∗ s)[n] denotes a convolution with the channel H[n],
which is a Rayleigh fading channel with exponential power
delay profile, uncorrelated among antennas, and constant for
each Monte Carlo experiment. However, a new realization of
H[n] is drawn for each simulation and thus we average over
many (on the order of 10k) channels H[n]. Finally, w[n] is
temporally white Gaussian noise with spatial correlation.

An example is seen in Fig. 2, where the LMPIT-curve
reveals that the optimal values for μ and λ for this particular
scenario are close to 12 and 0.6, respectively. For different
simulation setups these values vary, but extensive experiments
have shown that they are never very large nor close to zero.
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Fig. 2. Area under the ROC (AUR) of the test based on (32) as a function
of λ and μ. Performance of the GLRT (14) for reference. The parameters
N = 64, SNR = −15dB, P = 3, L = 3, and M = 20 are used.

If the maximum were in a corner, which corresponds to either
a large or a small parameter, we would obtain the best test by
using only one of the terms in (32). These individual terms can
be found in Fig. 2: Using large values of λ and small values of
μ is equivalent to approximating the test statistic by the term∑N−1

j=0 ‖ ˆ̄Cj‖2
F alone, which performs worse than the GLRT.

Using small λ and either small μ or large μ is approximately
the same as using either the term

∑N−1
j=0 ‖Ĉj‖2

F or ‖Ĉav‖2
F ,

respectively, as test statistic without the need to choose particu-
lar values of λ and μ (which cannot be determined in general).
Since the tests based on these statistics perform better than the
GLRT, we propose them as LMPIT-inspired tests for the case
of temporally white noise.

These LMPIT-inspired tests have suboptimal performance.
However, according to Fig. 2 the performance can still be
substantially better than competing tests, as the comparison
with the GLRT (14) demonstrates. More detailed simulations,
as well as comparisons with other detectors, will be presented
in Section VI.

The distribution of these statistics under the null hypothesis
can be obtained by the relationship between the log-det and
the Frobenius norm [30], [49]. Since the GLR for white noise
in Section III was det(Ĉ)M =

∏N−1
j=0 det(Ĉj)M , we can

conclude that

M

⎛

⎝
N−1∑

j=0

‖Ĉj‖2
F − LNP

⎞

⎠ (37)

is approximately χ2-distributed under the null hypothesis, with
degrees of freedom as in Table II.

Concerning the second proposed statistic, i.e. ‖Ĉav‖2
F ,

it can be shown that det(Ĉav)MN is the GLR for the
hypotheses

H1 : z ∼ CN (0, IN ⊗ SLP )
H0 : z ∼ CN (0, INP ⊗ SL) (38)

where SLP and SP are unknown matrices of dimension
LP and L, respectively. Thus we can argue again that this

log-GLR is asymptotically χ2-distributed, this time with
L2(P 2 − 1) degrees of freedom. Thus for the case of tempo-
rally white and spatially correlated noise, the modified statistic

MN
(
‖Ĉav‖2

F − LP
)

(39)

is approximately χ2-distributed with L2(P 2 − 1) degrees
of freedom. The case of temporally white and spatially
uncorrelated noise differs only in the degrees of freedom,
which are L(LP 2 − 1).

A. Interpretation of the LMPIT-Inspired Tests
The proposed LMPIT-inspired detectors can be interpreted

in terms of the cyclic PSD of the random process x[n]. The
cyclic PSD can be written as [30] and [50]

Σ(c)(θ)dθ = E
[
dξ(θ)dξH

(
θ − 2πc

P

)]
, (40)

where c/P denotes the cycle frequencies, and dξ(θ) is an
increment of the random spectral process that generates x[n]:

x[n] =
∫ π

−π

dξ(θ)ejθn. (41)

As shown in [30] and [50], the covariance matrix S =
E
[
zzH

]
contains samples of the cyclic PSD Σ(c)(θ) at some

frequencies θ and c ∈ Z. Under the alternative hypothesis,
S is block-diagonal with blocks of size LP . If we denote the
L × L sub-blocks of the jth LP × LP block Sj by S(k,κ)

j ,
it turns out that

S(k,κ)
j = Σ(k−κ)

(
2π(κN + j)

NP

)
(42)

holds for j = 0, . . . , N − 1, k = 0, . . . , P − 1, and κ =
0, . . . , P − 1. Under the null hypothesis, a similar relation
holds. In this case, S is block-diagonal with blocks of size L
and these blocks are identical because the noise is white:

S(k,k)
j = Σ(0)

(
2π(kN + j)

NP

)
= Σ(0) (43)

Thus the diagonal blocks only contain the cyclic PSD for the
cycle frequency zero, which is the standard PSD.

After defining the coherence function

Γ(c) (θ) =
(
Σ(0)

)−1/2

Σ(c) (θ)
(
Σ(0)

)−1/2

, (44)

the blocks of the coherence matrix C can be written as

C(k,κ)
j = Γ(k−κ)

(
2π(κN + j)

NP

)
. (45)

The sample coherence matrix Ĉ = Ŝ−1/2
0 Ŝ1Ŝ

−1/2
0 consists of

the blocks

Ĉ(k,κ)
j = ˆ̄S−1/2

0 Ŝ(k,κ)
j

ˆ̄S−1/2
0 , (46)

where Ŝ(k,κ)
j can be interpreted as an estimate of the cyclic

PSD:

Ŝ(k,κ)
j = Σ̂(k−κ)

(
2π(κN + j)

NP

)
(47)
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Further,

ˆ̄S0 =
1

NP

N−1∑

j=0

P−1∑

k=0

Ŝ(k,k)
j = Σ̂(0) (48)

is an estimate of the PSD in the case of white noise.
Now we can express the first proposed test statistic in terms

of the sample coherence function Γ̂(c) (θ):
N−1∑

j=0

‖Ĉj‖2
F =

NP−1∑

j=0

∥
∥
∥
∥Γ̂

(0)

(
2πj

NP

)∥∥
∥
∥

2

F

+ 2
P−1∑

c=1

(P−c)N−1∑

j=0

∥
∥∥
∥Γ̂

(c)

(
2πj

NP

)∥∥∥
∥

2

F

(49)

Hence this statistic accounts for both temporal correlation,
as measured by the term with c = 0, and the degree of cyclo-
stationarity (c �= 0). To find an interpretation for the second
proposed test statistic, we define

ˆ̄Σ(c)
κ =

1
N

N−1∑

j=0

Σ̂(c)

(
2π(κN + j)

NP

)
, (50)

which is the block-wise average of the cyclic PSD. Then it
turns out that the second proposed test statistic can be written

as a function of ˆ̄Γ(c)
κ =

(
Σ̂(0)

)−1/2 ˆ̄Σ(c)
κ

(
Σ̂(0)

)−1/2

:

‖Ĉav‖2
F =

P−1∑

κ=0

∥
∥
∥ ˆ̄Γ(c)

κ

∥
∥
∥

2

F
+ 2

P−1∑

c=1

P−c−1∑

κ=0

∥
∥
∥ ˆ̄Γ(c)

κ

∥
∥
∥

2

F
(51)

This test statistic also measures the amount of color and the
amount of cyclostationarity, but with an averaged coherence
function.

VI. SIMULATIONS

In this section we compare the LMPIT for uncorrelated
noise and the LMPIT-inspired tests for white noise with dif-
ferent detectors. Unless mentioned otherwise, the observations
are generated as stated in Section V.

A. Spatially Uncorrelated Noise
We first compare the performance of the GLRT (14),

the proposed LMPIT based on (16), and the LMPIT from [30],
which is based on the more general assumption of correlated
noise. The simulation setup is the same as introduced in
Section V, in this case using spatially uncorrelated and tempo-
rally colored noise w[n]. Colored noise is realized by passing
a temporally white signal through a moving average filter of
the length 19. The parameters are chosen as SNR = −17dB,
P = 3, N = 64, L = 3, and M = 10.

The performance is illustrated in Fig. 3 by means of an
ROC curve, which depicts the probability of detection PD and
the probability of false alarm PFA. Interestingly, both LMPITs
outperform the GLRT, even though the LMPIT from [30] does
not exploit the additional information about spatial uncorrelat-
edness. The two LMPITs perform very similarly, and we do
not gain much by taking into account spatial uncorrelatedness.
We already observed something similar in a simulation with
spatially uncorrelated noise in [31], where we compared the

Fig. 3. ROC curves for detecting a cyclostationary signal in uncorrelated
noise.

GLRT for the case of uncorrelated noise with the GLRT for
correlated noise. This is due to the fact that the number of
unknown parameters is not reduced as much for the case of
spatially uncorrelated noise.

B. Temporally White Noise
For the case of temporally white noise, we use the LMPIT-

inspired tests proposed in Section V. Further, there is also the
LMPIT in [30] and the GLRT presented in Section III, which
can be used for this scenario. We then have the following list
of test statistics:

①

∥
∥
∥
∥
(
diagL(Ŝ)

)−1/2

Ŝ1

(
diagL(Ŝ)

)−1/2
∥
∥
∥
∥

2

F

(52)

②

N−1∏

j=0

det
(
Ĉj

)
(53)

③

N−1∑

j=0

‖Ĉj‖2
F (54)

④ ‖Ĉav‖2
F (55)

The last three test statistics are specific to the scenario of
detecting cyclostationarity in white noise, while the first
expression (the LMPIT from [30]) covers the more general
case of a cyclostationary signal in temporally colored noise.
But because none of the last three tests is optimal, there is
no guarantee that they perform better, even though they use
additional information.

1) ROC Curves: Figures 4 and 5 show ROC curves for sim-
ulations with the parameters SNR = −12dB, P = 3, L = 3,
M = 20, as well as white and correlated noise w[n]. The
difference between the simulations shown in Figures 4 and 5
is the parameter N , which is 12 and 64, respectively. First of
all, the result reveals that our two proposed statistics ③ and ④

perform better than the white-noise GLRT ② and the colored-
noise LMPIT ①, independently of N . Increasing N to 64
reveals an interesting change of the ordering between ③ and ④.
As illustrated in Fig. 4, the statistic ③ leads to a better test
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Fig. 4. ROC of the proposed tests in (52)–(55), using N = 12.

Fig. 5. ROC of the proposed tests in (52)–(55), using N = 64.

for a low N , and conversely, the test ④ performs better if N
is large (Fig. 5).

This phenomenon was also observed for other values of
N and P : If N or P are large, then the test based on ④ is the
best and ③ performs somewhat worse. If N and P are small,
then ③ performs best and ④ looses performance.

2) Distribution Under the Null Hypothesis: As shown in
previous sections, the GLR as well as the LMPIT-inspired
statistics are approximately χ2-distributed under the null
hypothesis. In Fig. 6, we show the expected cumulative
distribution functions (CDFs) as well as the estimated CDFs
from simulation results with temporally white and spatially
uncorrelated noise and M = 64. It can be observed that all
terms that depend on a Frobenius norm are approximated
very well by the corresponding χ2 distribution, while the
GLR-statistic ② is quite far away from the expected result.
A similar result for small M was also observed in [30], where
it was concluded that the Frobenius norm converges much
faster to the χ2 distribution than the log-det.

3) Robustness Against Model Misspecification: In another
simulation we tested the robustness of the proposed
LMPIT-inspired detectors against violation of the white

Fig. 6. Cumulative distribution functions (CDFs) of the test statis-
tics ①-④ under the null hypothesis. Expected CDFs according to the
χ2-approximations (red lines) and the estimated CDFs of the normalized test
statistics ①-④ for simulations (blue circles).

Fig. 7. PD at PFA = 0.01 for noise with increasing temporal correlation
controlled by σ.

noise assumption. Instead of white noise, we used noise with
increasing temporal correlation. This was achieved by passing
white noise through an FIR-filter with impulse response g[n] =
exp(−n

σ ), where σ controls the degree of temporal correlation:
White noise is obtained for σ → 0 and an increasing σ
introduces an increasing level of temporal correlation.

Figure 7 shows the resulting performance as measured by
the probability of detection PD, at PFA = 0.01. In this
simulation we further use SNR = −16dB, P = 4, N = 64,
L = 3, M = 20 and QPSK signals with RRC pulse
shaping. As expected, the detectors designed for the white-
noise scenario (②-④) perform well for the case of almost white
noise and the general-noise LMPIT ① performs best when the
temporal correlation is large. Interestingly, the tests ② and ④

are more robust against deviation from white noise, as opposed
to the test based on ③. This robustness also holds when the
simulation is performed for a small N , for example N = 12.
Thus, the detector ④ should in most cases be preferred over ③.

4) Comparison With State-of-the-Art Detectors: Now we
compare the performance of the proposed detectors with
detectors from [18] and [20]. We use OFDM modulation with



6330 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 2018

Fig. 8. Probability of missed detection PMD at PFA = 0.01 for varying
SNR using OFDM transmission.

a QPSK constellation to demonstrate that the results are not
specific to single-carrier modulations. Since [18], [20] do not
require M > 1, we simulated the received signals with one
long observation for a fair comparison. This long observation
was split into multiple segments when using the statistics ①-④.
In particular, we use L = 2 antennas and receive 1024 symbols
of OFDM signals with 16 subcarriers and a cyclic prefix
of 4, sampled at Nyquist rate, which results in 20 samples
per symbol [18]. Thus the cycle period is P = 20. For the
detectors ①-④, we factor NM = 1024 into M = 64 segments
of length N = 16. For both [18] and [20] we use the first
cycle frequency, while the lags are chosen as ±16 and 16
for [18] and [20], respectively. This choice incorporates prior
information about the maximum of the cyclic autocorrelation
function for OFDM signals [18], [51]. In a practical cogni-
tive radio application, such prior information might not be
available. Hence, the comparisons are overly favorable for our
competitors.

The performance of the selected detectors for various SNRs
is illustrated in Fig. 8. It can be seen that the test ④ also
performs best in this setup. The tests not specific to the
white-noise scenario (i.e. ①, [18], and [20]), however, perform
considerably worse.

VII. COMPUTATIONAL COMPLEXITY

In this section, we estimate the computational complexity
of our detectors in terms of floating point operations (FLOPs).
To approximate the complexity, we focus on the most
time-consuming parts of the algorithm, which are equa-
tions (8), (11), (15), and then the tests themselves. For matrix
operations, we use the FLOP estimates from [52].

Equation (8) is most efficiently implemented by an FFT.
Since we need LM FFTs of length NP , this requires approx-
imately 5LMNP log2(NP ) FLOPS [53]. Next we only need
to compute the diagonal blocks of (11), which costs approx-
imately MN(LP )2 FLOPS. Finally, we can compute the
inverse in (15) by inverting the L×L diagonal blocks. In terms
of computational complexity this is negligible compared to the
rest of the matrix multiplication in (15), which in turn can be

optimized by exploiting the block-diagonal structure of the
involved matrices. Thus this operation takes approximately
2NL3P 2 FLOPS for the case of spatially correlated noise.
If we use a detector for the case of spatially uncorrelated
noise, this is reduced to NL2P 2 FLOPS. On top of this,
the detectors need to be computed. The LMPIT or LMPIT-
inspired tests compute the Frobenius norm, which is only of
linear complexity in the matrix size. The determinant for the
GLRTs has a bigger impact with approximately 1

3N(LP )3

FLOPS.
To summarize, for a large sensing duration (i.e. N ), the FFT

is the computational bottleneck. Since competing detectors
typically also use FFT-based statistics, the asymptotic com-
plexity in N is similar to our detectors. Our detectors further
benefit from the fact that they only require standard matrix
operations and the FFT. These operations exist in many
standard math libraries and are often optimized with respect
to other parameters such as memory and cache. Our detectors
can further benefit from parallelization.

VIII. NOISE CHARACTERIZATION

So far we have assumed to know whether the noise has
a particular temporal or spatial structure. If it is not known
a priori whether such a structure is present, and consequently
which detector is appropriate, we must first detect the noise
structure. To this end, we will assume to have available
samples of noise only.2

Testing whether or not a process is temporally white has
been treated in [54] and [55] and extensions for multivari-
ate processes have been published in [56]–[58]. Tests for
spatial (un)-correlatedness of random vectors were derived
in [49], [59], and [60]. Since it is possible to derive asymptotic
tests in the framework of this paper, we now present GLRTs
to determine if the noise is temporally white/colored or spa-
tially uncorrelated/correlated. To keep the same notation as
before, we assume to have NP samples of the noise process
x[n] = w[n]. As in Section II, we collect all samples in the
vector y and transform it to z. Given multiple realizations of y,
we test whether or not some temporal or spatial structure is
present.

A. Testing the Temporal Structure
Here we consider the hypotheses

H1 : x[n] is temporally colored,

H0 : x[n] is temporally white.

With the Gaussian assumption, these hypotheses are asymp-
totically equivalent to

H1 : z ∼ CN (0,S1)
H0 : z ∼ CN (0, INP ⊗ S0) ,

where S1 is a block-diagonal matrix with blocks of size
L × L, and S0 is an L × L matrix. Thus we essentially test

2An alternative approach, which does not need noise-only samples, would
be a multiple hypothesis test. Then the different hypotheses correspond to
a signal that is either cyclostationary, WSS with arbitrary spatio-temporal
correlation, or WSS without spatial and/or temporal correlation. As a multiple
hypothesis test is out of the scope of this paper, we do not follow this
alternative approach.
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whether or not the diagonal blocks of the sample covariance
matrix are identical. Since we do not know these blocks,
we have to estimate them, which leads to a GLRT. The
ML-estimates are listed in Table I, and using them we find
an expression for the log-GLR:

NP−1∑

k=0

log det
(
Ŝ(k,k)

)
− NP log det

(
1

NP

NP−1∑

k=0

Ŝ(k,k)

)

.

(56)

The log-GLRT is obtained by comparing (56) with a
threshold η. If it is smaller than η, the (white noise) null
hypothesis is rejected.

B. Testing the Spatial Structure
The hypotheses for testing the spatial structure are

H1 : x[n] is spatially correlated,

H0 : x[n] is spatially uncorrelated.

Asymptotically, this is equivalent to

H1 : z ∼ CN (0,S1)
H0 : z ∼ CN (0,S0) ,

where S1 is a block-diagonal matrix with blocks of size
L × L and S0 is a diagonal matrix. Thus the present test
is a special case of the test between two block-diagonal
matrices from [30], and we can specialize the test to the block
sizes L and 1. Then the log-GLR can be written as

NP−1∑

k=0

log det
(
Ŝ(k,k)

)
− log det

(
diag(Ŝ)

)
(57)

and the (uncorrelated noise) null hypothesis is rejected for
small values.

IX. CONCLUSIONS

We have presented tests for the detection of a cyclosta-
tionary signal with known cycle period in noise with known
statistical properties. In the case of temporally colored and
spatially uncorrelated noise, it was possible to find an LMPIT,
which computes the Frobenius norm of a sample coherence
matrix. Thus we obtained the same result as in the case of
spatially correlated noise, where the LMPIT and the GLRT
are, respectively, the Frobenius norm and the determinant of
another sample coherence matrix. As shown in simulations,
the performance gain compared to the LMPIT for noise with
arbitrary spatial correlation is small.

The case of white noise is quite different. Here the LMPIT
does not exist, as the likelihood ratio of the maximal invariant
statistics depends on unknown quantities. Instead, we proposed
two LMPIT-inspired tests. These tests are suboptimal, but it
was shown in simulations that these detectors can outperform
other tests for a variety of scenarios. This includes the case
of communications signals where the distribution under the
alternative is not complex normal and the case when only one
realization is available. The thresholds for the tests that depend
on a Frobenius norm can be chosen using a χ2 distribution.

Finally, we considered the case where a-priori information
about the noise structure is not available. If noise-only sam-
ples are available, we have also proposed tests to infer the
noise structure. This enables the utilization of the appropriate
detector for the subsequent signal detection task.

MATLAB code for our detectors is available at https://
github.com/SSTGroup/Cyclostationary-Signal-Processing.

APPENDIX A
PROOF OF LEMMA 1

The proof follows along the lines of the derivation of
the LMPIT in [30]. First we note that the determinants of
S0 and S1 in (20) are constant with respect to the observations
and thus they are irrelevant for the test statistic. Next we see
that G̃HS−1

1 G̃ as well as G̃HS−1
0 G̃ are block-diagonal with

block-size LP . For this reason, the traces only depend on the
diagonal LP × LP blocks of Ŝ and thus we can replace Ŝ
by Ŝ1 = diagLP (Ŝ) without changing the outcome. Now we
introduce the change of variables

G → G

⎛

⎝ 1
NP

N−1∑

j=0

P−1∑

k=0

Ŝ(k,k)
j

⎞

⎠

−1/2

(58)

in the nominator and the denominator. Both steps combined
cause the normalization Ŝ1 → Ĉ with the coherence matrix
Ĉ = Ŝ−1/2

0 Ŝ1Ŝ
−1/2
0 and

Ŝ0 = INP ⊗ 1
NP

N−1∑

j=0

P−1∑

k=0

Ŝ(k,k)
j . (59)

Applying the transformation

G →
⎛

⎝ 1
NP

N−1∑

j=0

P−1∑

k=0

Ŝ(k,k)
j

⎞

⎠

+1/2

G, (60)

we see that the trace in the denominator is constant:

tr
(
G̃ĈG̃H

)
= NP tr

(
GGH

)
. (61)

Thus the denominator does not depend on data and can be
discarded. Applying another transformation G → S̄−1/2

1 G
causes S−1

1 → S̃1. Finally, we rewrite and simplify the integral
in terms of α, β(G) and W. This concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

We define

Ψ =
∑

P

∫

Q

∫

G

β(G)W dG dQ, (62)

and note that (30) can be expressed as tr
(
ΨĈ

)
. Since W is

block-diagonal with blocks of size LP × LP , so is Ψ. The
permutation matrix P permutes these blocks and by summing
over all possible permutations, the blocks become identical.
This can be expressed as

Ψ = IN ⊗ Φ, (63)

where Φ is an LP × LP matrix. Now we have a similar
problem as in [42] and following the proof therein, it can be
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∑

P

tr2
(
WĈ

)
= (N − 2)! ·

⎛

⎝N

N−1∑

i=0

N−1∑

j=0

tr2
(
WiĈj

)
+ N4 tr2

(
WavĈav

)
⎞

⎠

− (N − 2)! · N2

⎛

⎝
N−1∑

j=0

tr2
(
WavĈj

)
+

N−1∑

j=0

tr2
(
WjĈav

)
⎞

⎠ (66)

shown that Φ is a diagonal matrix with identical elements.
Therefore we can simplify (30):

tr
(
ΨĈ

)
∝ tr

(
Ĉ
)

= NLP, (64)

because of the way Ĉ is normalized.

APPENDIX C
PROOF OF LEMMA 3

Since W and Ĉ are block-diagonal, we can first express
the trace in terms of their diagonal blocks of size LP × LP :

tr2
(
WĈ

)
=

N−1∑

j=0

tr2
(
WjĈj

)

+
N−1∑

j=0

N−1∑

i=0
i�=j

tr
(
WjĈj

)
tr
(
WiĈi

)
. (65)

Now we take care of the permutations. Note that the permuta-
tion matrix P in W permutes the set of blocks Wj . With this
in mind we sum over all permutations of (65). Using induction
it is possible to show that the result can be written as stated
in (66), as shown at the top of this page. Here we introduced
the matrix

Ŵav =
1
N

N−1∑

j=0

Ŵj , (67)

and Ĉav was defined in (34). Plugging this result back
into (31), the integrals are now expressed in terms of the blocks
Wj and Ĉj . Since

Wj = (Q⊗ G)H
(
S̃1,j − I

)
(Q⊗ G) , (68)

the problem at first looks very similar to the one in [42].
In fact, the problems are identical for the case of N = 1.
However, for N > 1, we have multiple terms in (65).
Moreover, the normalization of Wj and Ĉj as defined for
this problem is different compared to the counterparts in [42],
and thus requires a different solution.

The next step is to express the squared traces in (66) in
terms of the L × L sub-blocks of the LP × LP blocks
Wj and Ĉj . For the present problem, we can use the invari-
ances in the same way as in [42, Lemmas 5–7], but due to the
different normalization, fewer terms are constant. Most impor-
tantly, the sum of the diagonal sub-blocks is not normalized,
i.e. generally,

∑P−1
k=0 Ĉ(k,k)

j = P I only if N = 1. Accounting
for this difference, the rest of the proof follows along the

lines of [42, Lemmas 5–7]. Then the quadratic term (31) in
the Taylor series expansion can be written as

L ∝ c1

N−1∑

j=0

‖Ĉj‖2
F +c2 P

N−1∑

j=0

‖ ˆ̄Cj‖2
F + c3 N‖Ĉav‖2

F , (69)

with unknown c1, c2, and c3. After defining λ = c2
c1

and
μ = c3

c1
, this can be rewritten as stated in (32).
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