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Abstract—Motivated by passive source localization, we derive
a generalized likelihood ratio for detecting a Gaussian signal
common to two passive sensor arrays, measured in white Gaus-
sian noises of unknown variances. The resulting detector is
compared with a related detector that makes no such Gaussian
signal assumption. These two detectors are called, respectively,
second-order and first-order detectors. In the case where each
passive sensor employs a known beamformer, performance is
nearly identical. But for more general channel or beamformer
models where the received signal is assumed only to lie in a low-
dimensional subspace, the second-order detector can outperform
the first-order detector.

Index Terms—Generalized likelihood ratio test (GLRT), max-
imum likelihood (ML) estimation, minorization-maximization
(MM) algorithms, passive multi-channel detection, passive source
localization

I. INTRODUCTION

The problem is to detect the presence of a signal, common
at two distributed sensors [1]–[5]. It is assumed that the
transmitted signal lies in a low-dimensional subspace that can
be matched to, but there is no possibility for coherent matching
to carrier phase. So the channel between transmitter and sensor
is said to be partially coherent. When the dimension of the
subspace is one, then the matching to this subspace is achieved
with what amounts to a virtual beamformer. In some variations
on the general problem, the virtual beamformer is an actual
spatial beamformer.

In this paper, the baseband measurement model at each
single-antenna sensor consists of L temporal samples of a
received signal that has been propagated through a linear
passband channel and measured in white Gaussian noise of
unknown variance. These are organized into an L-dimensional
vector. The signal component of this measurement vector is
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assumed to be located in a known subspace of dimension
p. The actual location is determined by a p-dimensional
multivariate Gaussian vector. This contrasts with the model of
[6], where no statistical model is assigned to this vector. Then,
we get, respectively, second-order and first-order models [7].
The receiver then measures N such temporal vectors, each cor-
responding to a different location in the subspace determined
by a different p-dimensional Gaussian vector and a different
Gaussian noise vector. In this way, a data matrix is constructed
in which the signal component is determined by a sequence of
random visits to a known subspace. But, if the L time samples
are replaced by L space samples, with N such space samples
measured in time, then this model is equivalently a model
for N temporal measurements (snapshots) in an L element
sensor array. In the case of a one-dimensional subspace, the
subspace to be matched to is spanned by a steering vector
corresponding to a desired direction of arrival (DoA) and an
assumed wavefront curvature. More generally, the subspace
to be matched to is spanned by vectors that span a band of
wavenumbers, as in [8].

II. SIGNAL MODEL

The unknown baseband signal w(t), which is bandlimited,
is up-converted to a carrier frequency fc and the signal s(t) =
Re{ej2πfcw(t)} is emitted. In the case of a free space channel,
a noisy, delayed, and scaled version is received at each sensor,
which is down-converted into the signal

yi(t) = Gie
−j2πfcτi(t)w(t− τi(t)) + ri(t), i = 1, 2,

where τi(t) accounts for the offset between the transmitter
and receiver clocks, possible carrier frequency offsets, and
the time-varying propagation delay from the emitter to the
ith sensor; Gi is the channel gain, and ri(t) denotes the
combination of passband and baseband noises. Assuming
small variations of the propagation delay around τi, the time-
varying delay can be approximated as τi(t) ≈ τi + νit/fc,
with νit/fc ≪ τi,∀t, which allows us to approximate yi(t) as
yi(t) = α̃ie

j2πνitw(t − τi) + ri(t), where α̃i = Gie
−j2πfcτi .

After delay-Doppler synchronization, the signal becomes [6]

xi(t) = e−j2πνityi(t+ τi)

= α̃ie
j2πνiτiw(t) + e−j2πνitri(t+ τi).



The signal xi(t) is sampled at a rate 1/Ts, and collecting L
samples yields

xi = αiw + ri, (1)

where L is such that νiTsL/fc ≪ τi. Moreover,
αi = α̃ie

j2πνikiTs , xi = [xi[0], . . . , xi[L − 1]]T , ri =
[ri[0], . . . , ri[L− 1]]T , and w = [w[0], . . . , w[L− 1]]T . Here,
τi = kiTs is the delay,1 xi[n] = xi(nTs), w[n] = w(nTs), and
with some abuse of notation ri[n] = e−j2πνinTsri((n+ki)Ts).
In this model, the channel amplitude αi is unknown and given
no prior distribution, and the noise is assumed zero-mean
Gaussian and white, ri ∼ CNL(0, σ

2
i IL).

Typically, the transmitted signal can be modeled as a
subspace signal w = Us, where U ∈ CL×p denotes an
orthonormal basis for the p-dimensional subspace ⟨U⟩, and
s ∈ Cp are a set of p coefficients that determine the position
of w in ⟨U⟩. For instance, the subspace can be given by a
column slice of the DFT matrix or of a Slepian matrix. In this
work, we assume that this basis is known and, therefore, the
model (1) becomes xi = αiUs + ri, with U a known basis,
and αi and s unknown.

The previous derivation has considered a free-space channel.
However, if we consider a general linear passband channel, the
received signal becomes [6]

xi = αiUis+ ri, (2)

where now Ui accounts for the subspace model for the signal
w and the linear channel between the emitter and the ith
sensor.

Considering that each sensor records N realizations of (2),
the problem of deciding whether the received signal is a
distorted version of the transmitted signal or only noise can
be formulated as

H1 : xi[n] = αiUis[n] + ri[n],
H0 : xi[n] = ri[n],

(3)

where i = 1, 2, n = 1, . . . , N , Ui ∈ CL×p is the known basis
for the ith subspace that is constant over the N realizations,
αi = gie

jϕi is the unknown complex amplitudes for channel
i, with gi ≥ 0, s[n] ∈ Cp is the transmitted signal, which we
model as s[n] ∼ CN p(0, Ip), and ri[n] is the additive noise of
the ith channel, which is distributed as ri[n] ∼ CNL(0, σ

2
i IL),

with unknown variance σ2
i .

III. DERIVATION OF THE GLRT
Since the transmitted signal is modeled as s[n] ∼

CN p(0, Ip), i.e., a second-order model [7], the detection
problem in (3) becomes

H1 : x[n] ∼ CN 2L(0,R1),
H0 : x[n] ∼ CN 2L(0,R0),

(4)

where x[n] = [xT1 [n] x
T
2 [n]]

T , n = 1, . . . , N , and the covari-
ance matrices are

R0 =

[
σ2
1IL 0
0 σ2

2IL

]
,

1The delay is assumed to be a multiple of the sampling period to perform
the delay synchronization in discrete time.

and

R1 =

[
g21U1U

H
1 + σ2

1IL g1g2e
−jϕ2U1U

H
2

g1g2e
jϕ2U2U

H
1 g22U2U

H
2 + σ2

2IL

]
,

where we have assumed without loss of generality ϕ1 = 0.
Given the observations X = [XT

1 XT
2 ], with Xi =

[xi[1] · · · xi[N ]], the GLR for the problem in (4) is

Λ =
max
R1

ℓ(R1;X)

max
R0

ℓ(R0;X)
=
ℓ(R̂1;X)

ℓ(R̂0;X)
, (5)

where ℓ(Rh;X) is the likelihood of the hth hypothesis, given
by

ℓ(Rh;Y) =
1

π2LN det(Rh)N
exp

{
−N tr

(
R−1
h S

)}
,

with sample covariance matrix

S =
1

N

N∑
n=1

x[n]xH [n] =

[
S11 S12

SH12 S22

]
,

and R̂h is the ML estimate of the covariance matrix under
hypothesis h.

A. ML estimates under H0

Under H0, the only unknown parameters are the noise vari-
ances σ2

1 and σ2
2 whose maximum likelihood (ML) estimates

are σ̂2
i,0 = tr (Sii) /L. Then, the compressed log-likelihood

under H0 is

log ℓ(R̂0;X) = log ℓ(σ̂2
1,0, σ̂

2
2,0;X) = −L log σ̂2

1,0−L log σ̂2
2,0.

In all log-likelihoods in the paper, including the previous one,
constant and multiplicative terms that do not depend on data
will be omitted.

B. ML estimates under H1

To compute the likelihood ℓ(R1;X), we need to write the
log-likelihood explicitly in terms of the unknown parameters,
which is presented in the following lemma.

Lemma 1: The log-likelihood can be written as

log ℓ(R1;X) = log ℓ(β1, β2, ϕ2, ρ1, ρ2;X) = L log ρ1

− ρ1 tr(S11) + L log ρ2 − ρ2 tr(S22)− p log(γ) +
ρ1β

2
1

γ
η11

+
ρ2β

2
2

γ
η22 + 2

√
ρ1ρ2β1β2

γ
η21 cos(ψ21 − ϕ2), (6)

where inverse noise variances are the precision variables ρi =
1/σ2

i , βi = gi/σi, γ = β2
1 + β2

2 + 1, ηii = tr(UH
i SiiUi)

are the powers at the output of the multi-rank beamformers
Ui, and η21e

jψ21 = tr(UH
2 S21U1) is the cross-correlation

between the outputs of the beamformers.
Proof: Computing the determinant and inverse of R1 as

det(R1) = σ2L
1 σ2L

2 γp, and

R−1
1 =

 1
σ2
1

(
IL − β2

1

γ U1U
H
1

)
− β1β2

σ1σ2γ
e−jϕ2U1U

H
2

− β1β2

σ1σ2γ
ejϕ2U2U

H
1

1
σ2
2

(
IL − β2

2

γ U2U
H
2

) ,



the proof follows by simple algebraic operations.
Lemma 1 gives the log-likelihood under H1 as a function

of {β1, β2, ϕ2, ρ1, ρ2}, which is an invertible transformation
of the original parameters {g1, g2, ϕ2, σ2

1 , σ
2
2}. Note that the

terms depending on ηii can be computed locally at each sensor,
but the one that depends on η21 and ψ21 is a cross-validation
term, which combines the observations of both sensors, and
therefore must be computed at a fusion center.

Introducing yet another re-parametrization, given by the
unit-norm vector β = [β1, β2]

T /
√
γ − 1, the next lemma

derives the compressed log-likelihood as a function only of
the inverse noise variances.

Lemma 2: The compressed log-likelihood is

log ℓ(γ̂, β̂, ϕ̂2, ρ1, ρ2;X) = L log ρ1 − ρ1 tr(S11)

+ L log ρ2 − ρ2 tr(S22)+

max(λmax(ρ1, ρ2)− p, 0)− p log[max(λmax(ρ1, ρ2), p)],
(7)

where λmax(ρ1, ρ2) is the largest eigenvalue of

Σ(ρ1, ρ2) =

[
ρ1 0
0 ρ2

]1/2 [
η11 η21
η21 η22

] [
ρ1 0
0 ρ2

]1/2
.

Proof: It is easy to show that the maximizer of (6) with
respect to ϕ2 is ϕ̂2 = ψ21, which yields

log ℓ(γ,β, ϕ̂2, ρ1, ρ2;X) = L log ρ1 − ρ1 tr(S11)

+L log ρ2 − ρ2 tr(S22)− p log(γ) +
γ − 1

γ
βTΣ(ρ1, ρ2)β.

A few lines of algebra show that β̂ is the principal eigenvector
of Σ(ρ1, ρ2), with corresponding eigenvalue

λmax(ρ1, ρ2) =
1

2

[
η11ρ1 + η22ρ2

+

√
(η11ρ1 − η22ρ2)

2
+ 4η221ρ1ρ2

]
,

and γ̂ = max(λmax(ρ1, ρ2), p)/p. Finally, the proof follows
from β̂

T
Σ(ρ1, ρ2)β̂ = λmax(ρ1, ρ2).

The maximization of (7) cannot be solved in closed form.
Thus, we resort to minorization-maximization (MM) algo-
rithms [9]. The next lemma presents the proposed minorizer.

Lemma 3: The proposed minorizer of (7) at the (k + 1)th
iteration, up to constant terms, is

J(ρ1, ρ2) =

2∑
i=1

(
L log ρi − ρi tr(Sii) + Γ

(k)
i ρi

)
,

where, for λmax
(
ρ
(k)
1 , ρ

(k)
2

)
≥ p,

Γ
(k)
i =

λmax

(
ρ
(k)
1 , ρ

(k)
2

)
− p

λmax

(
ρ
(k)
1 , ρ

(k)
2

) ∂λmax(ρ1, ρ2)

∂ρi

∣∣∣∣ρ1=ρ(k)
1

ρ2=ρ
(k)
2

,

and Γ
(k)
i = 0 otherwise, with ρ

(k)
i the solution at the kth

iteration.

Proof: To derive the minorizer of (7), we will only
consider the last two terms,

J̃(ρ1, ρ2) = max(λmax(ρ1, ρ2)− p, 0)

− p log[max(λmax(ρ1, ρ2), p)].

Concretely, assuming J̃(ρ1, ρ2) is convex, a simple minorizer
would be given by the first-order Taylor series [9], which is
the one we propose in this lemma:

J̃(ρ1, ρ2) ≥ max
(
λmax

(
ρ
(k)
1 , ρ

(k)
2

)
− p, 0

)
− p log

[
max

(
λmax

(
ρ
(k)
1 , ρ

(k)
2

)
, p
)]

+Γ
(k)
i

(
ρi − ρ

(k)
i

)
.

Thus, it remains to prove that J̃(ρ1, ρ2) is convex. Since
J̃(ρ1, ρ2) is a composition of functions, it can be proved that
it is convex if λmax(ρ1, ρ2) is a convex function of ρ1 and ρ2
and J̃(ρ1, ρ2) is convex and nondecreasing in λmax(ρ1, ρ2)
[10]. It is easy to show that the Hessian of λmax(ρ1, ρ2) is
positive semidefinite, which makes λmax(ρ1, ρ2) convex. The
proof concludes by noting that J̃(ρ1, ρ2) is a convex function
in λmax and nondecreasing.

Then, the solution at the (k+1)th iteration is given by the
maximizers of J(ρ1, ρ2), which are

ρ
(k+1)
i = max

(
L

tr(Sii)− Γ
(k)
i

, 0

)
.

To initialize the MM algorithm we propose to use

ρ
(0)
i =

[
1

L− p
tr
(
P⊥

Ui
Sii
)]−1

, (8)

where P⊥
Ui

= IL − UiU
H
i . Finally, denoting the stationary

points after K iterations of the MM algorithm as ρ(K)
i , and

substituting all ML estimates in (5), the GLR is

log Λ = log ℓ(γ̂, β̂, ϕ̂2, ρ
(K)
1 , ρ

(K)
2 ;X)− log ℓ(R̂0;X). (9)

Moreover, as an approximation of the GLR that avoids the
MM iterative procedure, we propose Λapp, which replaces
the ML estimates of the inverse noise variances in (9) by the
initialization in (8).

IV. NUMERICAL RESULTS

This section studies the performance of the GLR, Λ, and its
approximation, Λapp, by means of Monte Carlo simulations.
Additionally, it compares the behavior of these two detectors
with the first-order counterpart, which assumes that the signal
s[n] is not assigned a prior distribution, that is, it is an un-
known parameter estimated in an ML framework. Concretely,
the first-order GLR is given by [6, Eq. (49)]:

L = L log
(
σ̂2
1,0ρ

(0)
1

)
+ L log

(
σ̂2
2,0ρ

(0)
2

)
− ρ

(0)
1 tr(S11)− ρ

(0)
2 tr(S22) + λmax

(
ρ
(0)
1 , ρ

(0)
2

)
,



where ρ
(0)
i is given by (8). Note that in [6], they use a

definition of Σ(ρ1, ρ2) that takes into account in the off-
diagonal terms the phase of tr(UH

2 S21U1), but this does not
modify the eigenvalues.

Before proceeding, we must point out that simulations show
that the proposed MM algorithm monotonically increases the
log-likelihood and that the proposed initialization typically
provides faster convergence. However, for the sake of space
we do not show convergence results here, and show instead
results that demonstrate the better detection performance of
the proposed detectors.

A. Experiment 1: Subspace dimension is p = 4

The first experiment compares the probability of missed de-
tection, pm, for a fixed probability of false alarm pfa = 10−3,
of the three detectors for a varying signal-to-noise ratio (SNR)
of channel 1, which is defined as

SNR1 = 10 log10

( |α1|2p
σ2
1L

)
,

and two different cases for the SNR of the second channel,
given by SNR2 = SNR1 and SNR2 = SNR1 + 10 dBs.
Concretely, we consider an experiment with N = 20, L = 6,
and p = 4. Moreover, in each Monte Carlo simulation, the
subspaces Ui are generated uniformly on the Stiefel manifold
and kept fixed for the N realizations, the channel gains are
distributed as αi ∼ CN 1(0, 1), and the noise variances are
selected to achieve the desired SNRi. Note that since αi
are unknown, their distribution is only used for the simu-
lations. As can be seen in Fig. 1, the second-order GLR
performs better than the first-order detector, specially when
SNR2 = SNR1. Moreover, this figure also shows that the MM
algorithm used to estimate the inverse noise variances achieves
a non-negligible increase of the detection performance, at
least for the case of SNR2 = SNR1 + 10 dBs. In the case
SNR2 = SNR1, the performances of Λ and Λapp almost
overlap.

B. Experiment 2: Beamformer. Subspace dimension is p = 1

The second experiment considers the same parameters as the
previous one, with the exception of p, which is now p = 1, that
is, we consider a beamforming case. Figure 2 shows the results
in this case, where we can highlight two important aspects. The
first one is that there is almost no difference between Λ and
Λapp, i.e., the proposed initialization achieves a very good
performance in this scenario and both curves overlap. The
second one is that the performance of the first-order detector
L is almost identical to that of the second-order detectors of
this paper.

V. CONCLUSIONS

In a subspace model for a common signal received at two
sensor arrays, visits to this subspace may be modeled as a
sequence of unknown visits, unmodeled by a prior probability
distribution; or by a sequence of unknown visits, modeled as
Gaussian random vectors. In the first case, Gaussian likelihood

−16 −14 −12 −10 −8 −6 −4 −2 0
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SNR1 (dBs)

p
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Λapp
Λ
L

Fig. 1. Probability of missed detection vs. SNR1 for pfa = 10−3 in a
scenario with N = 20, L = 6, p = 4, and two different cases for SNR2. 1)
Solid line: SNR2 = SNR1; 2) Dashed line: SNR2 = SNR1 + 10
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Fig. 2. Probability of missed detection vs. SNR1 for pfa = 10−3 in a
scenario with N = 20, L = 6, p = 1, and two different cases for SNR2. 1)
Solid line: SNR2 = SNR1; 2) Dashed line: SNR2 = SNR1 + 10

is parameterized by an unknown mean-value vector and in the
second case it is parameterized by an unknown covariance
matrix. These models are called first-order and second-order
models, respectively. How do the performances of passive
detectors derived for each of these models compare? In this
paper, a new detector for the second-order model has been
derived and its performance has been compared with the de-
tector for the first-order model published in [6]. For dimension-
one subspaces, performance is almost identical, but for higher
dimensions, second-order detectors can perform better.
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