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Abstract—This paper considers the passive detection of a
signal common to two multi-sensor arrays. We consider Gaussian
received signals and noises with positive-definite, but otherwise
unstructured covariance matrices. Under the null hypothesis,
the composite covariance matrix for the two arrays is block-
diagonal with arbitrary positive definite (PD) blocks, whereas
under the alternative, it is modeled as an unstructured covari-
ance matrix. Assuming complex inverse-Wishart priors for the
unknown covariance matrices, the proposed test relies on the
marginalized likelihood ratio, where the unknown parameters
(i.e., the covariance matrices) are integrated out. A proper
choice of hyper-parameters of the prior distribution shows that
the Bayesian-inspired test reduces to a regularized canonical
correlation analysis (CCA) detector. Simulation results show the
superior performance of the proposed method compared to the
generalized likelihood ratio test (GLRT), which is given by a
function of the canonical correlations.

Index Terms—Coherence, complex inverse-Wishart distribu-
tion, marginal likelihood ratio, multi-sensor array, passive radar.

I. INTRODUCTION

Over the past few decades, researchers have paid a lot of
attention to passive radar systems [1]–[5]. These bistatic radars
[6] operate without control over transmitted signals, i.e., they
use non-cooperative transmitters, known as illuminators of
opportunity, such as terrestrial TV [7] and FM broadcast trans-
mitters [8], mobile phone base transceiver stations (e.g., 4G/5G
base stations), and communication or navigation satellites [6].
The key advantages of passive radar systems include covert
operation, simplicity, cost-effectiveness, and energy efficiency.
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In passive radar (PR) and passive source localization (PSL),1

the transmitted signal, received at the surveillance and refer-
ence sensor arrays, is unknown. It is measured in additive
noise. For PR/PSL, researchers have proposed numerous ad-
hoc detection algorithms [10]–[13]. Additionally, detectors
have also been proposed based on first principles. If the signal
and channels are considered unknown parameters, then the
detection problem is addressed in a first-order model. The
work in [5] considers a first-order generalized likelihood ratio
test (GLRT) and [14] derives a Rao test.

It is possible to derive alternative detectors by constraining
the unknown signal. Detectors considering a priori signal
information, such as frequency domain sparsity [15], [16] or
known signal format [17], have been proposed. Another way to
include prior information is to say that the unknown signal is
drawn from a prior distribution. Then, the joint distribution of
the measurement and signal may be marginalized with respect
to the prior distribution for the signal. When measurement
and signal are multivariate normal (MVN), this marginal-
ization produces a MVN measurement model in which the
measurement covariance matrix is a computable function of
the noise covariance matrix and the signal covariance matrix.
But still, the covariance matrix for the signal is unknown. If
this unknown covariance matrix is estimated to maximize the
likelihood, then the resulting likelihood ratio detector may be
called a second-order GLRT [18], [19]. This gambit amounts
to replacing a large number of unknown signal values by
a smaller number of unknown values, or parameters, in the
unknown covariance matrix.

This would seem to be the end of the story, but if the
unknown signal can be constrained by a prior distribution, why
can’t the unknown covariance matrix be constrained by a prior
distribution on covariance matrices. These ideas originate in
the case of one-channel detection problems and the literature
is much scarcer. One of the few exceptions is the work in [20],
which derives a marginalized likelihood ratio for the detection
of a signal in the presence of uncorrelated Gaussian noise, or
[21], which considers Bayesian detectors for MIMO radar.

1In our parlance, passive radar differs from passive source localization,
where signals are only received in both channels when a reflecting target is
present [9].



This paper aims to extend the results of [18], where the
second-order GLRT for PR is shown to be a (reduced-rank)
canonical correlation detector, to the case where the unknown
signal covariance matrix is given an inverse complex Wishart
prior distribution [22]. The resulting marginal likelihood ratio
detector is shown to be a regularized, canonical correlation
detector, where the canonical correlations of [18] are replaced
by regularized canonical correlations computed from regular-
ized sample covariance matrices at the reference array and
at the surveillance array, with a regularization parameter that
appears naturally in the derivation and automatically adapts to
the number of samples, thus controlling the trade-off between
information provided by the observations and the information
provided by the prior. That is, for large number of samples,
this parameter takes smaller values than for a low number
of samples. The performance of the proposed detector is
evaluated by means of Monte Carlo simulations, and compared
to that of the generalized likelihood ratio test [18] and the
cross-correlation detector [11].

II. PROBLEM FORMULATION

In this paper, we address the detection of a Gaussian signal
in independent noises at the surveillance and reference arrays,
each with arbitrary spatial covariance matrix. In particular,
after propagation delay and Doppler shift compensation, we
consider the detection problem

H1 :

{
ys,n = Hsxn + ns,n,

yr,n = Hrxn + nr,n,

H0 :

{
ys,n = ns,n,

yr,n = Hrxn + nr,n,

(1)

where n = 1, . . . , N , ys,n ∈ CLs , and ns,n ∈ CLs are the
received signal and noise in the surveillance channel, Hs ∈
CLs×p, and xn ∈ Cp is the unknown transmitted waveform.
Analogously, yr,n ∈ CLr , nr,n ∈ CLr , and Hr ∈ CLr×p are
defined for the reference channel. Furthermore, similar to [18],
[19], we model the transmitted signal xn as a spatially and
temporally white Gaussian process, xn ∼ CN p(0, I), while
ns,n and nr,n are independent Gaussian noises that are tem-
porally white but each of them may present unknown spatial
correlation. That is, the covariance matrices of ns,n and nr,n,
denoted by Σs and Σr, respectively, are positive definite (PD).
Finally, we assume that the transmitted signal does not induce
any low-rank spatial structure, that is, p ≥ min(Ls, Lr).

Since the transmitted signal, xn, and noises are Gaussian,
the test in (1) becomes

H1 : yn ∼ CN (0,R),
H0 : yn ∼ CN (0,D),

(2)

where yn = [yT
s,n yT

r,n]
T . The covariance matrix under H1 is

R =

[
HsH

H
s +Σs HsH

H
r

HrH
H
s HrH

H
r +Σr

]
,

and the covariance matrix under H0 is

D =

[
Σs 0
0 HrH

H
r +Σr

]
.

The matrices R and D belong, respectively, to the following
sets of structured matrices: R1 = {R | R ⪰ 0}, and

R0 =

{
D =

[
Ds 0
0 Dr

]
| Ds ⪰ 0,Dr ⪰ 0

}
.

Thus, the detection problem boils down to a test for block-
diagonality, for which the generalized likelihood ratio (GLR)
test is [23]

λ = det(C), (3)

where the coherence matrix is [19]

C =

[
Sss 0
0 Srr

]−1/2 [
Sss Ssr

SH
sr Srr

] [
Sss 0
0 Srr

]−1/2

,

with the composite sample covariance matrix

S =
1

N
YYH =

1

N

N∑
n=1

yny
H
n =

[
Sss Ssr

SH
sr Srr

]
.

Here, the data matrix is Y = [YT
s YT

r ]
T , with Yi =

[yi,1 · · · yi,N ]. The statistic in (3) is a canonical correlation
analysis (CCA) detector as it can be rewritten in terms of the
canonical correlations [19]

λ =

min(Ls,Lr)∏
l=1

(1− k2l ),

where kl = svl(S
−1/2
ss SsrS

−1/2
rr ), with svl(·) denoting the

lth singular value, are the canonical correlations. For p <
min(Ls, Lr), the GLR only depends of the p largest canonical
correlation [18].

III. DERIVATION OF THE BAYESIAN-INSPIRED DETECTOR

Generalized likelihood ratio (GLR) detectors rely on the
maximum likelihood (ML) estimates of the unknown param-
eters, R and D. Instead of computing the ML estimates, in
this paper we follow a Bayesian-inspired approach that places
a prior on the unknown parameters and marginalizes them out
from the likelihood ratio to obtain what is often referred to in
the literature as a marginalized likelihood ratio. As we shall
show in Section IV, this approach yields better performance
than the GLR and other previously proposed techniques.

The marginal likelihood ratio is given by

λm =
p(Y | H0)

p(Y | H1)
, (4)

where the marginal likelihoods are

p(Y | H1) =

∫
R1

p(Y | H1,R)p(R)dR, (5)

and
p(Y | H0) =

∫
R0

p(Y | H0,D)p(D)dD.

Here, p(Y |H1,R) is the likelihood under H1

p(Y |H1,R) =
1

πLN [det(R)]N
exp

{
− 1

N
tr
(
R−1S

)}
,



and p(Y |H0,D) is the likelihood under H0, which can be
factored as p(Y |H0,D) = p(Ys |H0,Ds)p(Yr |H0,Dr)
and yields p(Y |H0) = p(Ys |H0)p(Yr |H0), where

p(Yi | H0) =

∫
Di≻0

p(Yi | H0,Di)p(Di)dDi. (6)

To avoid the numerical integration required for the computa-
tion of the aforementioned marginal likelihoods, we choose
conjugate priors for the likelihoods in (2). Concretely, for a
complex Gaussian likelihood with zero mean and unknown
covariance matrix, the conjugate prior is the complex inverse-
Wishart distribution, which under H1 is given by [22]

p(R) = CW−1
L (R; ν̆, R̆)

=
[det(R̆)]ν̆ [det(R)]−(ν̆+L)

CΓL (ν̆)
exp

{
− tr

(
R−1R̆

)}
,

where L = Ls+Lr, ν̆ is the number of degrees of freedom, R̆
is the PD scale matrix, and CΓL (·) is the complex multivariate
gamma function [24]

CΓL (a) =

∫
A≻0

exp {− tr (A)} [det(A)]a−LdA

= πL(L−1)/2
L∏

i=1

Γ(a− i+ 1),

with Γ (·) the gamma function. Similarly, under H0, we can
place independent priors on Di, i = {s, r}, which are given
by p(Di) = CW−1

Li
(Di; ν̆i, D̆i).

In the following, we shall sketch how to solve the integral
in (5). An equivalent procedure can be followed to compute
(6). The first step is noting that the integrand of (5) is the joint
distribution p(Y,R | H1), which can be rewritten as

p(Y,R | H1) = p(R | H1,Y)p(Y | H1).

After some straightforward manipulations of p(Y,R | H1), it
can be shown that

p(R | H1,Y) = CW−1
L (R; ν̂, R̂),

where ν̂ = ν̆+N and R̂ = R̆+NS. That is, as should happen
with conjugate priors, the posterior of R belongs to the prior
distribution family. Then, the marginal likelihood becomes

p(Y | H1) =
[det(R̆)]ν̆CΓL (ν̂)

πLN [det(R̂)]ν̂CΓL (ν̆)
, (7)

and, similarly,

p(Yi | H0) =
[det(D̆i)]

ν̆iCΓLi
(ν̂i)

πLiN [det(D̂i)]ν̂iCΓLi (ν̆i)
, (8)

where ν̂i = ν̆i +N and D̂i = D̆i +NSii.
Plugging (7) and (8) into (4), the marginal likelihood ratio

is

λm =
[det(R̂)]ν̂

[det(D̂s)]ν̂s [det(D̂r)]ν̂r

. (9)

Moreover, it is easy to show that for isotropic scaling matrices,
R̆ = ηI, D̆i = ηI, and ν̆ = ν̆i, (9) becomes

λm = det(C̃),

where C̃ is a regularized coherence matrix, given by

C̃ =

[
S̃ss 0

0 S̃rr

]−1/2 [
S̃ss Ssr

SH
sr S̃rr

] [
S̃ss 0

0 S̃rr

]−1/2

,

with the regularized sample covariance matrices S̃ii = Sii +
η
N I, i = {s, r}. Similar to the GLR, λm can also be expressed
in terms of the regularized canonical correlations

λm =

min(Ls,Lr)∏
l=1

(1− k̃2l ),

where k̃l = svl(S̃
−1/2
ss SsrS̃

−1/2
rr ). This makes the marginal

likelihood ratio λm a regularized CCA detector, where the
regularization parameter appears naturally and it adapts auto-
matically to the number of samples. That is, for large values
of N , the regularization plays a small role and this is automat-
ically taken into account as N appears in the denominator of
the regularization parameter. Moreover, if there is no additional
a priori information, assuming isotropic scaling matrices and
identical ν̆’s is appropriate since it does not favor any direction
for the covariance matrices.

IV. NUMERICAL RESULTS

This section studies, by means of Monte Carlo simulations,
the performance of the proposed marginal likelihood ratio test
(9) and compares it with the performance of the GLRT (3)
and the performance of the cross-correlation detector [11],
Tcc = ∥Ssr∥2F . In the experiments, we consider that channels
and noise covariance matrices are randomly generated in each
Monte Carlo simulation. Concretely, the covariance matrices
are randomly generated with uniformly distributed eigenvalues
between 0.2 and 1, and the eigenvector matrices are uniformly
distributed unitary matrices, while the channels are generated
as [Hi]lk ∼ CN (0, 1), i = {s, r}, l = 1, . . . , Li, k = 1, . . . , p,
which are scaled to achieve the desired signal-to-noise ratio
(SNR), defined as

SNRi = 10 log10

(
tr(HiH

H
i )

tr(Σii)

)
.

Additionally, in all examples, we have selected η = 5.
However, we have also evaluated other values in [0.5, 10], with
no significant differences.

The first experiment compares the receiver operating char-
acteristic (ROC) curves in a scenario with N = 50, Ls =
Lr = p = 10,SNRs = −7 and SNRr = 8 dBs. The curves,
depicted in Fig. 1, show that that the proposed detector (9)
outperforms the GLRT (3) and the cross-correlation based
detector Tcc. This shows the advantage of integrating out
the unknown parameters instead of replacing them by their
maximum likelihood estimates.

The second experiment compares the probability of missed
detection (pm) for a probability of false alarm pfa = 10−3
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Fig. 1. ROC curves in a scenario with N = 50, Ls = Lr = p =
10, SNRs = −7 and SNRr = 8 dBs
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Fig. 2. Probability of missed detection vs. SNRs for pfa = 10−3 in a
scenario with N = 50, Ls = Lr = p = 10, and two different cases for
SNRr = SNRs + ∆SNR: 1) Solid line: ∆SNR = 20; 2) Dashed line:
∆SNR = 10

vs. the SNRs. The experiment considers N = 50, Ls = Lr =
p = 10, and SNRr = SNRs +∆SNR, with ∆SNR = 10 and
∆SNR = 20 dBs. The results for this experiment are shown
in Fig. 2, where the marginalized detector (9) outperforms
(3) and Tcc over the whole range of SNRs and SNRr values.
Interestingly, this figure also shows that increasing the SNRr

by 10 dBs can be compensated by much smaller increases of
SNRs in this particular scenario.

The third experiment evaluates the probability of missed
detection vs. the number of snapshots N for pfa = 10−3

in a scenario with SNRs = −10 dBs, Ls = Lr = p = 10,
and the same two different cases for ∆SNR as the previous
experiment. Again, the proposed detector outperforms the
GLR and the cross-correlation detector, as Fig. 3 shows. This
figure shows that compensating the loss of SNRr requires a
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10−4

10−3

10−2

10−1

100

N

p
m

λm

λ
Tcc

Fig. 3. Probability of missed detection vs. N for pfa = 10−3 in a scenario
with SNRs = −10, Ls = Lr = p = 10, and two different cases for
SNRr = SNRs + ∆SNR: 1) Solid line: ∆SNR = 20; 2) Dashed line:
∆SNR = 10

large increase in the number of samples.

V. CONCLUSIONS

One of the most common detection techniques for passive
radar is the generalized likelihood ratio test (GLRT), which
substitutes the unknown parameters by their maximum like-
lihood estimates in the likelihood ratio. As an alternative to
the GLRT, in this work, we have derived the marginalized
likelihood ratio test, which integrates out the unknown param-
eters by assigning them a prior distribution. In particular, we
have considered the detection of a Gaussian transmitted signal
in noises with positive-definite, but otherwise unstructured
covariance matrices. The formulation of this problem boils
down to a test for the covariance structure of the observations,
in particular, whether the covariance matrix is block diagonal
or unstructured. Hence, by placing complex inverse-Wishart
priors on these covariance matrices, we are able to solve
the integrals and obtained a closed-form detector, which is
a function of regularized canonical correlations for certain
prior hyper-parameters. Interestingly, the regularization term
appeared naturally in the derivation and automatically adapts
to the number of samples. Finally, simulation results showed
that the proposed detector slightly outperforms the second-
order GLRT and the well-known cross-correlation detector.
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