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ABSTRACT

In this work we consider a multistatic passive detection
problem, which is motivated by a multiple-input multiple-
output (MIMO) passive radar application. Specifically, we
consider a single illuminator of opportunity (IO) and sev-
eral surveillance and reference arrays for the detection of a
Gaussian cyclostationary signal in temporally colored and
spatially correlated noise. Concretely, 1) we derive the
generalized likelihood ratio test (GLRT) for this problem
and 2) provide a stochastic representation of the test statis-
tic under the null hypothesis, which allows us to set the
threshold for a constant probability of false alarm. Monte
Carlo simulations are carried out to investigate the perfor-
mance of the proposed GLRT.

Index Terms— Cyclostationarity, generalized likeli-
hood ratio test (GLRT), multistatic passive radar.

1. INTRODUCTION

This paper considers a multiple-input multiple-output
(MIMO) passive multistatic radar system, which consists
of one transmitter and multiple multichannel receivers.
The goal is to detect the presence of a cyclostationary
target echo at multiple surveillance arrays given the mea-
surements at the surveillance and reference arrays. Many
techniques have been derived to approach this problem
based on different assumptions. The most common and
intuitive approach for single-input single-output (SISO)
signal detection is based on cross-correlating the sig-
nals at surveillance channel (SC) and reference channel
(RC) [1–6]. Although this resembles the matched filter, it
is suboptimal due to noise at the RC [6]. Further bistatic
setups are considered in [7–9], where generalized likeli-
hood ratio tests (GLRTs) were derived for the case of un-
known stochastic waveforms and for various assumptions
on the signal and noise models for MIMO channels. In our
previous works [10–12], we derived the GLRTs for differ-
ent noise assumptions and an LMPIT-inspired test for the
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bistatic passive detection of cyclostationary signals, which
we also refer to as two-channel detection problem since
there is only a single SC and a single RC. The GLRTs for
the case of unknown deterministic waveforms and different
assumptions on signal and noise models were presented
in [13, 14]. Bayesian tests were derived in [13, 15].

The authors in [14] derived the GLRT for the multi-
static detection problem, i.e., for multiple reference and
surveillance arrays, considering unknown deterministic
waveforms. Moreover, the authors discussed the bene-
fits of centralized processing approaches and compared
it to similar detectors encountered in active MIMO radar
and passive source localization problems. In [16], the
authors proposed an ad-hoc detector based on the gen-
eralized coherence [17]. A GLRT for a passive MIMO
radar is proposed in [18] for unknown channel coefficients
and colored Gaussian noise provided there is secondary
training data available.

In this work we consider the multistatic passive radar
problem and derive the GLRT for the detection of a Gaus-
sian cyclostationary signal in temporally colored and spa-
tially correlated noise given multiple surveillance and ref-
erence arrays. In order to ensure a constant false alarm
rate, we also provide a stochastic representation of the test
statistic under the null hypothesis that allows for determin-
ing the threshold. It is shown that the distribution under
the null is given by a product of independent random beta
variables. The performance of the proposed GLRT is com-
pared to the state-of-the-art by means of numerical simula-
tions.

2. PROBLEM FORMULATION

Let us consider a scenario with J surveillance antenna ar-
rays and K reference antenna arrays. We assume that all
arrays are equipped with L antennas, although the results
could be generalized to different numbers of antennas at
each array. The single IO is assumed to be equipped with
LI antennas. A noisy version of its transmission signal is
received at the reference arrays. In the presence of a re-
flecting target, there will also be a noisy version of the IO
signal present at the surveillance arrays whereas there is
only noise if no target echo is present.
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Assuming that the target echo is synchronized in
Doppler-shift and time-delay with the direct-path signal
propagating from IO to the reference array, the problem
can be formulated as follows:

H0 : us,j [n] = vs,j [n], j = 1, . . . , J,
H1 : us,j [n] = Hs,j [n] ∗ s[n] + vs,j [n], j = 1, . . . , J,

(1)
and reference signals under both hypotheses: ur,k[n] =
Hr,k[n] ∗ s[n] + vr,k[n], k = 1, . . . ,K. Furthermore,
Hs,j [n] ∈ CL×LI and Hr,k[n] ∈ CL×LI represent the
time-invariant frequency-selective channels from the IO
to the surveillance and reference arrays, respectively. The
additive independent noise terms vs,j [n] ∈ CL, j =
1, . . . , J, and vr,k[n] ∈ CL, k = 1, . . . ,K, are assumed
to be wide-sense stationary (WSS) with arbitrary temporal
and spatial correlation.

The IO signal s[n] ∈ CLI is discrete-time zero-
mean second-order CS with cycle period P . For this
reason ur,k[n] = Hr,k[n] ∗ s[n] + vr,k[n] is also CS
with cycle period P and so are, under the alternative,
us,j [n] = Hs,j [n] ∗ s[n] + vs,j [n]. Hence, the goal is to
detect cyclostationarity at the surveillance arrays. More-
over, we assume that LI ≥ L, which implies that the cyclic
(cross) power spectral densities (PSD) of Hs,j [n] ∗ s[n]
and Hr,k[n] ∗ s[n] have full rank L.

The model above assumes that there is no clutter, in-
terference, or direct-path signal present at the RC and SC.
This may be achieved by either physical shielding [19]
or cancellation through signal processing techniques pre-
sented in e.g. [3, 20]. Admittedly, the complete cancel-
lation of direct-path interference in the SC is an ideal-
ized assumption as pointed out in [20]. A more sophis-
ticated model considering the direct-path interference is
approached in [6, 21, 22] but they do not exploit cyclosta-
tionarity. The time-delay of the target echo is inherently
accounted for in the frequency-selective channels in our
model. Moreover, considering that direct-path interference
has zero Doppler-shift as opposed to the target path signal,
it can be filtered [23].

3. DERIVATION OF THE GLRT

In order to detect the presence of cyclostationarity at the
SCs, we exploit the results from [24], where the GLRT
for the detection of cyclostationarity in a single channel
has been derived. Assuming Gaussianity, the problem
boils down to a test for the structure of the covariance
matrix. Specifically, the covariance matrix of a vector-
valued WSS signal us,j [n], j = 1, . . . , J, is Hermitian
block-Toeplitz with block size L. Under the alternative,
us,j [n], j = 1, . . . , J, is cyclostationary with cycle period
P and the covariance matrix is again Hermitian block-
Toeplitz but with block size LP . Additionally, the cross-
covariance matrices of us,i[n] and us,j [n] are non-zero
and block-Toeplitz with block size LP .

The authors in [24] show that the maximum likelihood
estimate of a block-Toeplitz structured covariance matrix
of a Gaussian distribution can be approximated by a block-
circulant matrix, which allows for a closed-form solution.
Based on these results, we first stack NP observations of
us,j [n] and ur,k[n] into two vectors ws,j ∈ CLNP and
wr,k ∈ CLNP , respectively. Noting that a block-circulant
matrix can be block-diagonalized by the DFT matrix, we
transform the observations into the frequency domain:

zs,j = (LNP,N ⊗ IL)(FNP ⊗ IL)
Hws,j ,

zr,k = (LNP,N ⊗ IL)(FNP ⊗ IL)
Hwr,k,

where FNP is the DFT matrix of dimension NP , LNP,N

is the commutation matrix, and the matrix (LNP,N ⊗ IL)
permutes the observations such that zs,j and zr,k contain
N blocks of P frequencies, which are separated by mul-
tiples of the cycle frequency 2π/P . When the signals are
cyclostationary, these frequencies are correlated. Hence,
under the null hypothesis the covariance matrices of zs,j
are block-diagonal with block size L, whereas the cross
covariance matrices of zs,i and zs,j for i 6= j are zero.
Under the alternative, the (cross) covariance matrices of
zs,i and zs,j are block-diagonal with block size LP and
so are the (cross) covariance matrices of zr,k and zr,l, for
k, l = 1, . . . ,K.

Now, we can put the pieces together to establish the
structure of the covariance matrix of z under both hypothe-
ses, where z =

[
zTs zTr

]T ∈ C(J+K)LNP with zs =[
zTs,1 · · · zTs,J

]T ∈ CJLNP and zr =
[
zTr,1 · · · zTr,K

]T ∈
CKLNP . Under the null hypothesis we obtain

S0 = E[zzH |H0] =

[
S
(0)
s 0
0 Sr

]
,

where the off-diagonal blocks are zero since observations
at SC and RC are uncorrelated. Here, S(0)

s = E
[
zsz

H
s |H0

]
is a block-diagonal Hermitian matrix with block size L and
Sr = E

[
zrz

H
r

]
is aK×K Hermitian block matrix, where

each block of dimension LNP×LNP is a block-diagonal
matrix with block size LP . Now, underH1, the covariance
matrix is given by

S1 = E[zzH |H1] =

[
S
(1)
s Ssr

SH
sr Sr

]

where S
(1)
s = E

[
zsz

H
s |H1

]
, Ssr = E

[
zsz

H
r |H1

]
, and Sr

as before. Finally, we can reformulate the hypothesis test
in (1) asymptotically in the frequency domain as

H0 : z ∼ CN (J+K)LNP (0,S0),
H1 : z ∼ CN (J+K)LNP (0,S1).

Given M independent and identically distributed re-
alizations of z, z0, . . . , zM−1, and after some algebraic
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reformulations, the generalized likelihood ratio (GLR) is
given by

G 1/M = det
(
D−CCH

)
= det (D) det

(
IKLNP − C̃HC̃

)
, (2)

where

D =
(
Ŝ(0)
s

)−1/2
Ŝ(1)
s

(
Ŝ(0)
s

)−1/2
,

C =
(
Ŝ(0)
s

)−1/2
Ŝsr

(
Ŝr

)−1/2
,

C̃ =
(
Ŝ(1)
s

)−1/2
Ŝsr

(
Ŝr

)−1/2
,

and maximum likelihood (ML) estimates given by1

Ŝ(0)
s = diagL (Qs) ,

Ŝ(1)
s = blockJ,J diagLP (Qs) ,

Ŝsr = blockJ,K diagLP (Qs) ,

Ŝr = blockK,K diagLP (Qs) .

In these expressions, the sample covariance matrix is

Q =
1

M

M−1∑
m=0

zmzHm =

[
Qs Qsr

Qrs Qr

]
.

Let us provide a brief interpretation of the test statis-
tic (2): the first factor accounts for all combinations of
the cyclic cross spectral correlations at multiple surveil-
lance arrays, i.e., it is a generalization of the multivariate
cyclostationarity detector [24] to multiple arrays. The sec-
ond factor accounts for the additional information avail-
able through cross spectral correlations across all combi-
nations of the signals at surveillance and reference arrays
in the presence of a target. Then, this GLR shows how to
fuse the information provided by the additional channels.
Asymptotically, the detector has a constant false alarm rate
(CFAR) with respect to the noise PSD at the SC and the
signal-plus-noise PSD at the RC.

4. ASYMPTOTIC DISTRIBUTION UNDER THE
NULL HYPOTHESIS

The GLR can be expressed as a ratio of determinants of the
ML estimates of the covariance matrices Ŝ0 and Ŝ1. Since
a properly selected permutation of Ŝ0 and Ŝ1 makes them
block-diagonal, and generalizing [25], it can be shown that
the distribution of the GLR statistic under the null hypoth-
esis is given by a product of independent Beta random vari-
ables, that is

G 1/M D
=

N∏
l=1

{
JP∏
k=1

L∏
m=1

Uk,m

}{
KLP∏
n=1

Vn

}
, (3)

1The operator blockL,M diagN (A) obtains an L×M block matrix
from the matrix A, where each block is a square block-diagonal matrix
with block size N obtained from the respective block in A, where A is
of suitable dimension.

where all U, V are independent Beta distributed random
variables:

Uk,m ∼ Beta {M − ((k − 1)L+m− 1) , (k − 1)L} ,
Vn ∼ Beta {M − (JLP + n− 1) , JLP} .

Since (3) only depends on the known parameters J , K, L,
P , M , and N , it allows us to generate offline the empiri-
cal distribution functions. These can be used to select the
desired threshold for a given probability of false alarm.

5. NUMERICAL RESULTS

This section evaluates the performance of the proposed
GLRT by means of Monte Carlo simulations. According
to the model in (1), we generate the CS signal s[n] as a
QPSK-signal with rectangular pulse shaping. The number
of samples per symbol is equal to the cycle period P . Fur-
thermore, the frequency-selective channels Hs,j [n] and
Hr,k[n] are both Rayleigh-fading channels with a delay
spread of 10 times the symbol duration and an exponential
power delay profile. For all J,K, we generate Hs,j [n] and
Hr,k[n], and vs,j [n] and vr,k[n] independently. Also note
that new realizations of all parameters are drawn in each
Monte Carlo simulation.

The SNR is defined as

SNR♣ = 10 log10

 tr
(
R̂♣

)
tr
(
V̂♣

)
 ,

where ♣ ∈ {s, r} and

R̂♣ =
1

MNP

MNP−1∑
n=0

h♣[n]h
H
♣ [n],

V̂♣ =
1

MNP

MNP−1∑
n=0

v♣[n]v
H
♣ [n],

with h♣[n] =
[
(H♣,1[n] ∗ s[n])T (H♣,2[n] ∗ s[n])T · · ·

]T
,

and similarly, vs[n] =
[
vT
s,1[n] · · · vT

s,J [n]
]

and vr[n] =[
vT
r,1[n] · · · vT

r,K [n]
]
. Hence, the SNR is as an average

across all surveillance and reference arrays, respectively.
In order to evaluate the performance of the proposed

GLR, we generalize the correlated subspace detector, de-
noted as K and proposed in [9], to the case of multiple
surveillance and reference arrays by treating them as two
large arrays of dimensions JL and KL, respectively. The
second competitor is the multiarray extension of the popu-
lar cross-correlation detector [6], denoted as C . It should
be noted that the cross-correlation detector does not require
any prior knowledge, whereas the correlated subspace de-
tector needs to know the number of antennas LI at the IO,
and our proposed technique also needs to know the cycle
period P . Generally, both P and LI could be estimated or
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Fig. 1: ROC curves in a scenario with P = 2, N = 16,
M = 64, L = LI = 2, a rectangular pulse, SNRs =
SNRr = −20 dBs, and an equal number of surveillance
and reference arrays J = K = 5.

they may be known from the standards used by the IO.
Additionally, we also compare the proposed detector to
our previously derived two-channel detectors from [12] by
treating the J surveillance arrays with L antennas each as
one large array with JL antennas and similarly, the refer-
ence arrays are treated as another large array with KL an-
tennas. The two-channel GLRT is denoted as G (2-ch) and
the two-channel LMPIT-inspired test is denoted as LSR

(2-ch).
In Figure 1 we investigate the receiver operating char-

acteristic (ROC) curve for SNRs = SNRr = −20 dBs in
the case of an equal number of arrays at surveillance and
reference arrays, i.e., J = K = 5. We can observe that
the GLRT, denoted as G , performs best. The two-channel
detectors from [12] perform second best. They are fol-
lowed by K and the cross-correlation detector is almost
the chance line. The reason for the poor performance of the
cross-correlation detector is the low SNR regime, as it was
similarly observed in [12]. Since the performance of this
detector is particularly bad, we will neglect it in further fig-
ures as it does not provide further insight. The gap between
the multichannel detectors and the two-channel detectors
can be explained by the fact that the two-channel detec-
tors inherently presumes a different noise structure than
the one present in the data generation. Specifically, the
two-channel detectors overfit the underlying noise model
as they presume more degrees of freedom than those actu-
ally present.

Now, we choose all parameters as before and keep the
total number of arrays constant but increase the number
of surveillance arrays to J = 8 and decrease the number
of reference arrays to K = 2. Figure 2 shows that the
GLRT G performs best followed by the two-channel detec-
tors. Note that the order of the two-channel GLRT and the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pfa

p
d

G
G (2-ch)
LSR (2-ch)
K

Fig. 2: ROC curves in a scenario with P = 2, N = 16,
M = 64, L = LI = 2, a rectangular pulse, SNRs =
SNRr = −20 dBs, J = 8 surveillance, and K = 2 refer-
ence arrays.

two-channel LMPIT-inspired test has changed. This can
be explained by the fact that the GLRT combines spectral
correlations within the surveillance array with the cross-
correlations between SC and RC. Since for this scenario
we have more surveillance arrays than reference arrays,
it is more beneficial to include the inter-SC correlations
rather than only accounting for the cross-spectral correla-
tions only as it is done by the two-channel LMPIT-inspired
test [12]. The correlated subspace detector performs simi-
larly to the two-channel LMPIT-inspired test.

6. CONCLUSION

We have derived the GLRT for the detection of cyclosta-
tionary signals given multiple surveillance and reference
arrays. The derived detector exploits the cross spectral cor-
relations across all surveillance channels induced by the
cyclostationary properties of the target echo and the cross
(spectral) correlations across the surveillance and reference
arrays to detect the presence of a cyclostationary signal
at the surveillance channels. Numerical simulations have
shown that it outperforms competing techniques.
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