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ABSTRACT

Change-point detection (CPD) aims to locate abrupt transitions in
the generative model of a sequence of observations. When Bayesian
methods are considered, the standard practice is to infer the posterior
distribution of the change-point locations. However, for complex
models (high-dimensional or heterogeneous), it is not possible to
perform reliable detection. To circumvent this problem, we propose
to use a hierarchical model, which yields observations that belong to
a lower-dimensional manifold. Concretely, we consider a latent-class
model with an unbounded number of categories, which is based on
the chinese-restaurant process (CRP). For this model we derive a con-
tinual learning mechanism that is based on the sequential construction
of the CRP and the expectation-maximization (EM) algorithm with
a stochastic maximization step. Our numerical results show that the
proposed method is able to recursively infer the number of underlying
latent classes and perform CPD in a reliable manner.

Index Terms— Bayesian inference, continual learning, change-
point detection (CPD), chinese-restaurant process (CRP), expectation-
maximization (EM) algorithm.

1. INTRODUCTION

Change-point detection (CPD), which consists of locating abrupt
transitions in the generative model of the observations, is a problem
with a plethora of applications. For instance, CPD is widely used
in finance [1, 2], the analysis of social networks [3, 4], or cognitive
radio [5,6]. The main focus of CPD methods has been traditionally on
batch settings, where the entire sequence of observations is available
and has to be segmented. However, CPD is most useful in online
scenarios, where change points must be detected as new incoming
samples are observed. Online CPD methods have two intertwined
tasks to solve: i) segmentation of sequential data into partitions (or
segments) and ii) estimation of the generative model parameters for
the given partitions.

Since each partition has a different generative distribution, the
identifiability of change points is related to the difference between
such distributions. In this context, Bayesian inference is useful for in-
ferring the distributions given a prior distribution in a reliable manner.
The Bayesian online change-point detection (BOCPD) approach [7]
used this idea for recursively performing density estimation, which
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yields a more robust detection process as the propagation of uncer-
tainty is considered. However, it can be observed that, for complex
likelihood models, which have a number of parameters much higher
than the number of observations between two consecutive change
points, reliable CPD becomes unfeasible. This can be the case of,
although is not restricted to, high-dimensional and/or heterogeneous
observations (mixture of continuous and discrete variables), which
usually have a prohibitive number of parameters.

To address the aforementioned issue, in [8] we presented a hier-
archical probabilistic model based on latent classes, i.e., a mixture
model. The CPD problem can be carried out directly on the lower-
dimensional manifold, where the discrete latent variables lie. Hence,
this method requires less evidence than the observational counterpart
since the number of parameters is reduced, which yields faster and
more reliable detections. However, [8] requires that the number of
classes is fixed a priori.

The main contribution of this paper is to introduce a novel ap-
proach, based on continual learning [9–11], to recursively infer the
underlying sequence of latent classes, its distributions, and the change
points. The key idea of the proposed model is to allow for an un-
bounded order on the latent model, that is, the number of classes
is not fixed and could even become infinite. In particular, we use
the Chinese-restaurant process (CRP) [12], which is a well-known
Bayesian non-parametrics method, to model the latent variables with
an unbounded number of classes. That is, the CRP may increase
the number of classes as new observations come in. Moreover, as
with any mixture model, the expectation-maximization (EM) algo-
rithm [13] is used, but in this work the maximization step (M-step)
is substituted by a stochastic M-step [14]. Finally, the experimental
results on real data show how both the latent-class inference process
and the change-point detection perform reliably.

2. BAYESIAN ONLINE CHANGE-POINT DETECTION

We start by considering a time series x1:t = {x1, x2, . . . , xt}, which
is divided into non-overlapping partitions, denoted by ρi, i = 1, 2, . . .
Each partition is separated from its neighbors by change points (CP).
Based on [7], we assume that the data within each partition ρi is
independent and identically distributed (i.i.d.) according to some
generative probability distribution p(xt|θρi), where the parameter
vector, θρi , is unknown. Under this assumption, change points are
determined by changes in the parameters:

θt =


θρ1 , t < CP1,

θρ2 , CP1 ≤ t ≤ CP2,

θρ3 , CP2 ≤ t ≤ CP3,
...

(1)
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Fig. 1. Illustration of the parallel inference threads for the estimation
of θt conditioned on the run-length rt given x1:t.

The main idea in [7] is the run-length, rt, which is defined as a
discrete random variable that counts the number of time-steps since
the last CP, that is,

rt =

{
0, CP at time t
rt + 1, otherwise,

(2)

and may be seen as a proxy for change points. The objective of the
BOCPD technique is to compute the posterior distribution p(rt|x1:t)
recursively, from which we will identify a CP if the probability mass
accumulates near rt = 0.

The posterior distribution p(rt|x1:t) is obtained by marginaliz-
ing the joint distribution p(rt,x1:t) over all the rt values seen so far,
which, in turn, is computed by marginalizing the model parameters,
θt. The learning of θt given the partition, required for the compu-
tation of p(rt,x1:t), is carried out using a multiple thread inference
mechanism induced by the run-length. For instance, to learn θ3 given
r3 = 2, only the observations {x2, x3} are required. This parallel
inference scheme is depicted in Figure 1, where we illustrate the
aforementioned example using the notation θ3|{x2, x3}.

The inference of p(rt|x1:t) in [7] may become unfeasible when
the complexity of the generative model increases, for instance, for
high-dimensional and/or heterogenous observations. That is, if the
likelihood p(xt|θρi) for the partition ρi depends on an extremely
large number of parameters, it would not be possible to obtain suffi-
cient statistical evidence to detect change points. This problem may
yield the BOCPD method unusable in some problems.

3. CPD ON HIERARCHICAL MODELS

The aforementioned problem of the BOCPD for complex genera-
tive models can be overcome by introducing hierarchical models.
We propose to use latent classes to obtain such hierarchical model.
These latent classes, zt, yield observations, xt, that belong to a
lower-dimensional manifold, and allow us to write the generative
distribution of xt as

p(xt|θt) =

K∑
zt=1

p(xt|zt)p(zt|θt),

where zt is a categorical random variable, withK being the maximum
number of classes or categories, and θt is the vector of parameters,
i.e., the probability of each class. This form of latent-class model can
be seen as a mixture model.

Even assuming a hierarchical model, we are still interested in
p(rt|x1:t), which would require the marginalization over z1:t as
follows

p(rt,x1:t) =
∑
z1:t

p(rt,z1:t,x1:t). (3)

However, for large values of t and K, the marginalization in (3) is
computationally unfeasible due to the combinatorial sums. In [8], to
avoid the marginalization, we assumed that we observe z1:t, instead
of marginalizing them, by directly plugging in the values of the
maximum a posteriori (MAP) estimates, which are given by

z?t = arg max
zt

p(zt|xt). (4)

Now, using the MAP estimates as observations and assuming that the
joint distribution on the right hand side (r.h.s.) of (3) factorizes as

p(rt,x1:t,z
?
1:t) = p(x1:t|z?1:t)p(rt,z?1:t),

with
p(rt,z

?
1:t) =

∫
p(rt,z

?
1:t,θt)dθt,

we are effectively considering that the change points occurred on the
sequence of latent classes. Using the extended recursion of [8], which
is given by

p(rt,z
?
1:t) =

∑
rt−1

p(rt|rt−1)Ψ
(r)
t p(rt−1,z

?
1:t−1), (5)

where p(rt|rt−1) is the conditional prior and

Ψ
(r)
t = p(z?t |rt−1,z

?
1:t−1)

=

∫
p(z?t |θt)p(θt|rt−1,z

?
1:t−1)dθt, (6)

is the predictive distribution of the present latent variable conditioned
on previous data and the run-length, we have all the ingredients to
compute

p(rt|z?1:t) =
p(rt,z

?
1:t)∑

rt
p(rt,z?1:t)

, (7)

which determines the location of the change points.

3.1. Infinite-dimensional Hierarchical BOCPD

The problem of the hierarchical BOCPD algorithm presented above
is that the number of classes, K, must be known and fixed a priori.
That is, K is not allowed to vary over time, which can be a stringent
condition in some scenarios. In this section, we consider the more
interesting case that K is unknown and can be time-varying, i.e., new
classes may appear as t→∞. Then, we cannot select the order of the
latent-class model in advance. A naive idea would be to fix an upper
bound on K and proceed as in the previous section. However, this
upper bound could not be available and, even if it is, the performance
can be poor, as we will see in Section 5. In the following, we will
present a method for unbounded and time-varying K, that is, K is
incremented when an unseen type of observations appears, which
translates into a hierarchical BOCPD with unbounded K.

Using an unbounded number of classes results in the follow-
ing problem when integrating over θt to compute Ψ

(r)
t . Assum-

ing a Dirichlet distribution for θt, which is the conjugate prior for
categorical distributions and therefore yields a tractable integral
in (6), the evidence p(zt) → 0 as K grows. To overcome this
issue, we can consider an exchangeable distribution of the form
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p([zt]) =
∑

z1:t∈[z1:t]
p(z1:t), where [z1:t] is a given division

of classes, which is independent of the temporal assignments, i.e.,
z1:3 = {1, 2, 2} corresponds to the same division of objects as
z1:3 = {2, 1, 1}. This is often known as the exchangeability prop-
erty [12,15] and is a safe assumption in our setup as we are interested
in changes in the probabilities of zt, not in the particular sequences
z1:t.

The latent-class model with an unbounded dimension can be
addressed using the CRP [12], which is a Bayesian non-parametrics
method [16]. The CRP is based on a metaphor where clients (ob-
servations xt) are assigned to different tables (latent classes zt) in a
sequential manner. The assignment of classes to objects in the CRP is
determined by the predictive posterior distribution, which is given by

p(zt = k|z1, . . . , zt−1) =

{
mk,t−1

t−1+α
, k ≤ Kt−1,

α
t−1+α

, k = Kt−1 + 1,
(8)

wheremk,t−1 counts the number of assignments to class k up to time
t−1,Kt−1 is the number of classes associated withmk,t−1 > 1 and
α is a hyperparameter, which corresponds to the natural parameter of
a symmetric Dirichlet prior distribution, and controls how likely is
the appearance of a new class.

Exploiting the aforementioned CRP construction, the computa-
tion of Ψ

(r)
t in (5) is straightforward, and is given by

Ψ
(r)
t = p(z?t = k|rt−1,z

?
1:t−1), (9)

where we now count the number of MAP estimates, z?t , equal to k
up to time t− 1. Notice that this expression is analogous to (8) for
a given run-length, i.e., for each parallel thread in Fig. 1. Then, we
may proceed to compute the posterior p(rt|z?1:t).

One final comment is in order. So far, we have derived a tractable
recursive way to introduce latent-class models into Bayesian CPD
methods with an unbounded number of classes. However, nothing
has been said on how to compute the MAP estimates in a continual
learning fashion, which are required in (7). This task is explored in
Section 4.

4. CONTINUAL LEARNING OF THE CRP

In this section, we compute the MAP estimates of zt in an on-
line and recursive fashion. This task also involves the estimation of
{ϕk}Kt

k=1, which are the parameters of the mapping between observa-
tions and latent variables, that is, p(xt|zt = k) = p(xt|zt = k,ϕk).
Here, the number of classes Kt increases if when sampling from the
CRP predictive distribution the result is Kt−1 + 1. That is, at the
beginning of each iteration we create a new class with an emission
probability given by (8), which is only kept if the MAP estimate is
z?t = Kt−1 + 1.

Mixture models do not usually have closed-form solutions for the
estimates of the parameters and the class assignments. Therefore, it is
necessary to resort to the expectation-maximization (EM) algorithm
[13], for which we need the log-likelihood of the complete data,
which is given by

Lϕ(x1:t,z1:t) = log p(x1:t,z1:t|{ϕk}Kt
k=1) =

log p(z1:t) +
t∑

τ=1

log p(xτ |zτ , {ϕk}Kt
k=1), (10)

where the prior distribution p(z1:t) factorizes as

p(z1:t) = p(zt|z1:t−1)p(zt−1|z1:t−2) · · · p(z1).

Algorithm 1 Infinite-dimensional Hierarchical BOCPD
1: Input: Observe xt and initialize ϕ̂Kt−1 .
2: Sample zt ∼ p(zt|z?1:t−1)
3: if zt = Kt−1 + 1 then
4: Initialize ϕ̂Kt−1+1

5: end if
6: Compute p(zt = k|z?1:t−1), ∀k ≤ Kt−1 + 1

7: Compute E[I{zt = k}|z?1:t−1, xt, ϕ̂
(t−1)
k ], ∀k ≤ Kt−1 + 1

8: Update parameters {ϕ̂k}
Kt−1+1

k=1 using (11)
9: Calculate z?t = arg max(p(zt|z?1:t−1, xt, {ϕ̂

(t)
k }

Kt−1+1

k=1 )
10: if z?t = Kt−1 + 1 then
11: Kt = Kt−1 + 1
12: end if
13: for rt = 1 to t do
14: Evaluate Ψ

(r)
t using (9)

15: Calculate p(rt,z?1:t)
16: Obtain p(z?1:t) =

∑
rt
p(rt,z

?
1:t)

17: Compute p(rt|z?1:t)
18: Update m(r)

k,t ← m
(r)
k,t−1 + I{z?t = k}

19: end for
20: Return: r?t = arg max p(rt|z?1:t)

This factorization is possible due to the chain-rule and the CRP
construction described in Section 3.1. Once the complete data log-
likelihood is available, we may apply the expectation step (E-step)
and the maximization step (M-step) of the EM algorithm. In this
work, we have slightly modified the M-step to accept the proposed
continual learning framework. Concretely, the estimation of the
parameter at each step is simply performed by taking one iterate of
a steepest descent method, yielding a stochastic M-step [14]. The
E-step amounts to

E[I{zt = k}|z?1:t−1, xt, ϕ̂
(t−1)
k ] = p(zt = k|z?1:t−1, xt, ϕ̂

(t−1)
k )

∝ p(xt|zt = k, ϕ̂
(t−1)
k )p(zt = k|z?1:t−1),

where E[·] is the expectation operator, ϕ̂(t)
k is the estimate of ϕk at

time t, and we have exploited (8). In the M-step, the estimate of the
parameters {ϕk}Kt

k=1 is updated based on the gradient:

ϕ̂
(t)
k ← ϕ̂

(t−1)
k + ηk,t∇ϕkE[Lϕ(x1:t,z1:t)], (11)

where ηk,t is the (adaptive) learning rate for the kth class at time t. In
this expression, we have assumed that the same initial learning rate is
chosen for the parameters of a given class, but it is possible to select
multiple learning rates per class. Once we have the E- and M-steps,
we can compute the posterior of zt and maximize it to obtain z?t as
in (4). Finally, Algorithm 1 presents all the necessary computations
of the proposed recursive method at each time instant t and the
Python implementation can be found in https://github.com/
pmorenoz/continual_ihcpd for reproducibility purposes.

5. EXPERIMENTS

In this section we evaluate the performance of the proposed method.
We apply the infinite-dimensional hierarchical BOCPD algorithm
to real-world data, and in particular, to a sequence of raw nuclear
magnetic response measurements taken during a well-drilling process.
This data consists of 4500 real-valued univariate observations taken
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Fig. 2. Upper row plots show the well-drilling univariate signal for the unbounded latent variable model (left) and the hierarchical CPD method
(right) with fixed K. The colors represent latent-class asignments. Bottom row plots show the MAP estimates of the run-length.

at a fixed sampling frequency. In the following, we assume that the
time steps are ordered and discrete for simplicity.

To apply the proposed model, we choose p(xt|zt = k,ϕk) to
be Gaussian distributed with unknown mean and variance, that is,
ϕk = {µk, σ2

k}. Moreover, the model has two hyperparameters
that we need to select. The first one, which is related to the CPD
method, is the parameter λ of the hazard function that is used as the
conditional prior, p(rt|rt−1). In the experiments, we have selected
λ = 106. The second one is the parameter α, which is involved in the
CRP construction, and controls how likely is the appearance of a new
unseen class. We set it to α = 1.0. For the stochastic M-step, we use
two different adaptive learning rates for the mean and variance whose
initial values are given by ηµ = 1.0 and ησ = 0.02. Importantly,
we made both learning rates decrease at a rate of 2% per time-step
if zt = k was selected as the most likely latent class. This choice
avoids adapting very old parameters with new incoming data.

Figure 2 shows the results obtained for t = 4500 iterations.1 The
unbounded model is compared with the hierarchical CPD approach
with an upper bound on the number of classes K = 10. In the upper
figures we can see the well-drilling signals, as well as the latent-
class assignments in different colors for both approaches. As can
be observed, the final number of classes inferred by the CRP was
K4500 = 7. In the bottom figures we show the MAP estimates of the
run-length, r?t . These figures show that the MAP estimation of the
run-length is well aligned with the signal transitions. Furthermore, it
should be noted that the proposed method is more robust to outliers
as can be seen for t ≈ 200 and t ≈ 600, where the outlier is captured
by the latent class assignment but a CP is not declared. In fact, the
MAP estimate of the run-length is noisier for the method with a fixed
number of classes than for the unbounded model.

In addition, the latent-class assignments look more consistent
in the case of the infinite-dimensional hierarchical CPD algorithm,
where both the initial and final samples of the well-drilling signal
are assigned to the same latent-class. The main two advantages of
the method can be observed from the empirical results. First, the
method uses past learned parameters to infer assignments over very
recent data, that is, assignments coincide along time. Second, the
CRP is able to discover new unseen latent-classes without fixing the

1A video demonstrating the complete simulation of the algorithms is avail-
able at https://www.youtube.com/watch?v=ymZPNURhtIc.

model complexity a priori and avoids the overlapping with previous
discovered classes. For instance, if a new latent class k∗ appears, it
would not coincide with the previous learned ones, and neither their
parameters.

Finally, it is important to note that, since the unbounded model
creates new classes as they become necessary, its computational
complexity is smaller than that of the hierarchical CPD approach,
which needs to estimate the parameters of K = 10 classes at every
time step.

6. DISCUSSION AND FUTURE WORK

This work has extended the Bayesian online change-point detection
method to more complex scenarios by considering a hierarchical
model, which is based on latent-class variables. To prevent the limita-
tion of fixing the order of the hierarchical model a priori, we allow
for an unbounded number of classes using the chinese restaurant
process. Moreover, the inference of the class assignments is done
with an expectation-maximization algorithm, where the M-step is
carried out stochastically, that is, only one iteration of a steepest
descent method is taken. Finally, the performance of the proposed
method is validated empirically over real-world data. We show its
robustness and utility for the aforementioned purposes. In future
work, it would be interesting to extend it to multi-channel settings
with multivariate generative models. Also, instead of introducing a
latent-class model, we may consider a feature-based approach, e.g.,
the indian buffet process (IBP) construction as an alternative method
that captures interpretable correlations in the hierarchical layer of the
CPD method.
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