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ABSTRACT

This paper addresses the problem of testing whether a covariance
matrix can be expressed by an unknown linear combination of a
set of known matrices or by another unknown linear combination
of a set of different, but known, matrices. This problem is of inter-
est in a wide range of real-world applications, such as radar, sonar,
and spectrum sensing. We study the problem under the Gaussian
assumption and derive the generalized likelihood ratio test (GLRT).
Since there is no general closed-form solution for the maximum like-
lihood (ML) estimates of the covariance matrices, which are required
for the GLRT, we resort to a powerful inverse iteration algorithm. Fi-
nally, an example, along with numerical results, is given to illustrate
the methodology.

Index Terms— Covariance structure, generalized likelihood ra-
tio test (GLRT), hypothesis testing, inverse iteration algorithm.

1. INTRODUCTION

Detecting a signal contaminated by noise is a problem that plays an
important role in a broad range of applications, such as target detec-
tion in radar [1] and sonar [2], image processing [3], and spectrum
sensing [4, 5], to name a few. The main property that allows the
aforementioned detection problem to be solved is the difference be-
tween the spatio-temporal structure of the signal of interest and that
of the noise, which results in received signals with different covari-
ance structures.

The structures that typically appear in detection problems are
quite diverse. For instance, the problem in [6] considered a uniform
linear array (ULA), which translates into signals with a stationary
spatial correlation and, therefore, the covariance matrix is Toeplitz.
However, if the array consists of different well-separated sub-arrays,
the covariance matrix becomes block-diagonal, as the correlation be-
tween sub-arrays can be considered negligible [7]. Similarly, for
wide-sense stationary (WSS) univariate time series, the covariance
matrix of the stack of n observations is also Toeplitz and it is block-
Toeplitz for multivariate WSS signals [4, 8].

Interestingly, all aforementioned structures, and many more, can
be represented by an unknown linear combination of known matri-
ces (the basis). Thus, we face a detection problem with unknown
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parameters, i.e., composite hypotheses [9]. To address hypothesis
tests with composite hypotheses, the common approach is based on
the generalized likelihood ratio test (GLRT). The derivation of the
GLRT requires the maximum likelihood (ML) estimates of the co-
variance matrices, which may not have a closed-form solution, even
for Gaussian signals. This has motivated the development of ad-hoc
tests, such as those in [10] for spectrum sensing problems.

In this paper, we develop a testing procedure for the aforemen-
tioned general linear class of covariance structures of multivariate
Gaussian signals based on the GLRT. Since there is no closed-form
solution for the ML estimates of the unknown parameters, we resort
to the inverse iteration algorithm (IIA) [11], which is a powerful
algorithm for computing the ML estimates of structured covari-
ance matrices. As an interesting example of the proposed detector,
we study the problem of testing whether the covariance matrix of
the observations is block-Toeplitz. A similar problem was studied
in [8,12], where the authors exploited the asymptotic equivalence of
block-Toeplitz matrices with block-circulant ones, for which there
exist closed-form ML estimates. However, such an approach is only
applicable for testing block-Toeplitz structure with different block
sizes. Thus, it is not easy to generalize it to detect block-Toeplitz
structure against other linear structures, as the preprocessing steps
might alter the other structure. Moreover, in the finite case, the
equivalence between block-Toeplitz and block-circulant matrices
might be poor, which would result in noisy ML estimates. Here, by
resorting to the inverse iteration method, we derive the exact (i.e.,
non-asymptotic) GLRT, thereby allowing us to test, for instance,
between block-Toeplitz and more general linear structures in the
finite case.

We also study the distributions of the proposed GLRT under both
hypotheses, showing that, when H1 includes H0, they are asymp-
totically central and non-central chi-squared distributions under the
null and the alternative, respectively. Finally, we evaluate the per-
formance of the proposed detector by means of Monte Carlo simula-
tions. First, we show that it presents the same performance for sce-
narios where there are closed-form GLRT statistics. Second, for a
particular detection problem, we demonstrate that it performs better
than the competitors. Third, we provide numerical results to illus-
trate the accuracy of the proposed distributions.

2. DETECTION PROBLEM

Suppose x ∈ Cp follows a zero-mean circular complex Gaussian
distribution CN (0,Σ). Under the null hypothesis (H0), Σ can be
represented by a linear combination of the basis {B1, . . . ,Br}, that
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is,

Σ0 =

r∑
i=1

αiBi, (1)

where αi are the unknown coefficients of the linear combination and
Bi ∈ Rp×p are known matrices. Similarly, under the alternative hy-
potheses (H1), the covariance matrix can be represented by another
basis {D1, . . . ,Ds} as

Σ1 =

s∑
i=1

βiDi,

where βi are also unknown coefficients and Di ∈ Rp×p are known
matrices.

Collecting now n samples of x in the data matrix X =
[x(1), . . . ,x(n)], our aim is to test between the following hy-
potheses:

H0 : Σ ∈ B,
H1 : Σ ∈ D,

where B is the set of matrices in the span of {B1, . . . ,Br} and D
that of {D1, . . . ,Ds}. Without loss of generality, we assume that
r < s. That is,H0 is more structured thanH1.

In the subsequent sections, we derive the generalized likelihood
ratio test (GLRT) for this detection problem, and establish its lim-
iting distributions, which are necessary for threshold selection and
performance evaluation.

3. THE GENERALIZED LIKELIHOOD RATIO TEST

3.1. Derivation of GLRT

Under the Gaussian assumption, the probability density function
(PDF) of x under both hypotheses is given by

f(X|Σi) =
1

πpn detn(Σi)
exp

[
−ntr

(
Σ−1
i S

)]
,

where tr(·) and det(·) represent the trace and determinant operators,
and S = XXH/n is the sample covariance matrix (SCM). Accord-
ing to the GLR criterion [9], the unknown quantities in the likelihood
ratio, namely the covariance matrices, are replaced by their ML es-
timates under the corresponding hypothesis. Thus, the GLRT can be
written as

TGLRT =
supΣ1∈D f(X|Σ1)

supΣ0∈B f(X|Σ0)

=
detn(Σ̂0)

detn(Σ̂1)
exp

{
−ntr

[(
Σ̂
−1

1 − Σ̂
−1

0

)
S
]}

, (2)

where Σ̂1 and Σ̂0 are, respectively, the ML estimates of Σ1 and Σ0.
Before computing the ML estimates, let us simplify the GLRT

in (2). It is easy to see from (1), that for any matrix Σ in B (or D),
aΣ also belongs to B (or D), i.e., B and D are cones. Therefore, we
may use a lemma from [13], which sets a trace constraint on the ML
estimate of covariance matrices that belong to a cone. Concretely,
this lemma states the following.

Lemma 1 If a covariance matrix Σ belongs to a cone, its ML esti-
mate within such cone satisfies

tr
(
Σ̂
−1

S
)

= p,

where p is the dimension of the random vector.

Algorithm 1 Inverse iteration algorithm
Require: {B0, . . . ,Br} and S

1: Set k = 0 and G(0) = Ip
2: repeat
3: Compute A = {[A]i,j}ri,j=1 and c = [c1, . . . , cr]

T as:

[A]i,j = tr
(
G−1

(k)BiG
−1
(k)Bj

)
ci = tr

(
G−1

(k)SG−1
(k)Bi

)
4: Obtain α = A−1c
5: Calculate G(k+1) =

∑r
i=1 αiBi

6: while G(k+1) 6� 0 do
7: G(k+1) =

(
G(k+1) + G(k)

)
/2

8: end while
9: Update k = k + 1

10: until convergence
11: return Σ̂0 = G(k)

Applying Lemma 1, the GLRT can be simplified as

T
1/n
GLRT =

det(Σ̂0)

det(Σ̂1)
. (3)

Now, the last ingredient necessary for the GLRT is to compute
the ML estimates of the covariance matrices. In general, there is
no closed-form ML estimate for the covariance matrices Σ0 ∈ B
and Σ1 ∈ D. Some exceptions would be, for instance, when Σi

is a positive definite matrix without further structure or it is a diag-
onal matrix. Thus, in this work, we resort to the inverse iteration
algorithm [11]. This method is presented in Algorithm 1 for the es-
timation of Σ0. As in [14], since Σ̂ affects the value of the detector
only through its determinant, we may set the convergence condition
as ∣∣∣∣det(G(k+1))

det(G(k))
− 1

∣∣∣∣ ≤ ε
with ε being an acceptable error rate. Finally, the ML estimates Σ̂0

and Σ̂1 obtained using the inverse iteration algorithm are plugged
back in (3) to compute the GLRT.

3.2. Asymptotic distributions of the GLRT

Deriving the distributions of the GLRT is, in general, cumbersome,
even in the asymptotic case. However, if H1 includes H0 as a par-
ticular case, we may obtain the asymptotic distribution of the GLRT
using Wilks’ theorem [15]. This is typically the case of most real-
world applications. Concretely, Wilks’s theorem states the follow-
ing:

Theorem 1 (Wilks) Consider the binary hypothesis testing prob-
lem

H0 : θ = θr0 ,θs,

H1 : θ 6= θr0 ,θs,

where θs ∈ Rg×1 is the nuisance parameter vector and θr0 ∈
Rf×1. Then, the GLRT is asymptotically distributed as

2 ln(TGLRT) ∼

{
χ2
f underH0

χ2
f (σ2) underH1,

(4)
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where χ2
f and χ2

f (σ2) denote central and non-central chi-squared
PDFs, respectively, with f being the degrees of freedom and σ2 the
noncentrality parameter, which depends on the Fisher information
matrix and the true parameters.

Although Theorem 1 provides a distribution for both hypothe-
ses, in most problems it is not possible to obtain the noncentrality
parameter since the computation of the Fisher information matrix is
usually intractable. Thus, we may use the approximation of [14],
which allows us to obtain the noncentrality parameter as

σ2 = 2 ln(TGLRT)|θ̂=θ1
, (5)

where θ1 are the parameters underH1. Then, using Theorem 1 and
(5), it is easy to conclude that, in our problem, the degrees of freedom
are f = s− r under both hypotheses and σ2 becomes

σ2 = 2 ln(TGLRT)|S=Σ1

= 2n ln(det(Σ̄1))− 2n ln(det(Σ1)),

where Σ̄1 is the output of Algorithm 1 when we use the basis
B1, . . . ,Bs and Σ1 instead of S.

3.3. Computational Complexity

The computational complexity of the iterative-GLRT mainly con-
sists of three parts: the computation of the SCM, the determinants in
(3) and the inverse iteration algorithm. It is well-known that the first
two requireO(p2n) andO(p3) flops, respectively. For the inverse it-
eration algorithm, one of the most computationally demanding steps
is the computation of the elements of A and c, which requiresO(p3)
flops per element, with a total of r(r+1)/2+r elements. In addition,
the algorithm also computes a matrix inverse in Step 4, which de-
mands O(p3) flops. Besides, Step 4 generates another O(p3) flops.
Thus, neglecting the computational complexity in other steps of the
algorithm, the total complexity per iteration is

t(r) = O
([

r(r + 1)

2
+ r

]
p3 + 2p3

)
.

Consequently, the total amount of flops of the GLRT is:

tsum = l0 · t(r) + l1 · t(s) +O
(
p2n+ p3

)
, (6)

where l0 and l1 are the number of iterations of Algorithm 1 under
H0 and H1, which, according to our simulations, barely exceed 6
iterations. Obviously, the computational load of the inverse itera-
tion algorithm grows rapidly with the sizes of the covariance matrix
and the basis. Therefore, the simplification of the inverse iteration
algorithm is still an interesting research line for future work.

4. APPLICATION OF THE PROPOSED GLRT

In this section, we present an interesting example to illustrate the
applicability of the considered detection problem and the proposed
iterative-GLRT. In particular, we consider that one covariance matrix
is block-spherical, that is, Σ0 = I ⊗∆, with ⊗ denoting the Kro-
necker product, whereas the other one is block-Toeplitz with block
size k. This problem appears, for instance, in the detection problem
of multivariate temporally colored signals contaminated by tempo-
rally white noises with spatial (unknown) covariance matrix ∆.

Since closed-form ML estimates do not exist for block-Toeplitz
matrices, [8] exploits the asymptotic equivalence of the block-
Toeplitz matrices and block-circulant matrices, for which there exists

an ML estimate based on the Fourier transform. However, in the non-
asymptotic regime, we do not know how this estimate will perform.
Nevertheless, since block-Toeplitz and block-spherical matrices can
be represented by a linear combination of two sets of matrices, we
may apply the proposed iterative-GLRT to solve this detection prob-
lem.

For a p-dimensional block-spherical matrix with block size k,
the basis matrices B1, . . . ,Bk2 are block-spherical with the first di-
agonal block given by

[Bl]i,j = δ(i, x)δ(j, y) + δ(i, y)δ(j, x),

for 1 ≤ l ≤ k(k + 1)/2, and

[Bl]i,j = ıδ(i, x′)δ(j, y′)− ıδ(i, y′)δ(j, x′),

for k(k + 1)/2 < l ≤ k2. Here, ı =
√
−1, δ(·, ·) is the Kronecker

delta function and 1 ≤ i ≤ k, 1 ≤ j ≤ k. Moreover, x and y are
two integers, with 1 ≤ y ≤ x ≤ k, such that x(x − 1)/2 + y = l.
Similarly, x′ and y′ are two integers, with 1 < y′ < x′ < k, such
that (x′ − 1)(x′ − 2)/2 + y′ = l − k(k + 1)/2.

Similarly, for block-Toeplitz matrices with block size k, the
basis is defined by the block-Toeplitz matrices D1, . . . ,D2kp−k2 ,
where Dl = Bl for l = 1, · · · , k2 and Dk2+1, · · · ,D2kp−k2 have
their first k columns as:

[Dl]i,j = δ(i− k, l − s0)δ(j, 1), s0 < l ≤ s1,
...

[Dl]i,j = δ (i− k, l − sk−1) δ(j, k), sk−1 < l ≤ sk,
[Dl]i,j = ıδ(i− k, l − r0)δ(j, 1), r0 < l ≤ r1,

...
[Dl]i,j = ıδ (i− k, l − rk−1) δ(j, k), rk−1 < l ≤ rk,

where q = p/k, sm = k2 + m(p − k), rm = sk + m(p − k) and
1 ≤ i ≤ p, 1 ≤ j ≤ k.

Finally, once these basis are defined, it is straightforward to com-
pute the iterative-GLRT.

5. SIMULATION

In this section, we carry out Monte Carlo simulations to validate our
theoretical findings. We first verify the correctness of the ML es-
timates obtained by Algorithm 1 by comparing the iterative-GLRT
statistic with the statistic of several well-known GLRTs for detection
problems where there are closed-form solutions. Then, we consider
the problem of testing block-Toeplitz against block-spherical covari-
ance structures, which is the problem introduced in the previous sec-
tion. Finally, we check the accuracy of the asymptotic distributions
in (4) underH0 andH1.

5.1. Approximation error

In this section we collect the largest relative error of the iterative-
GLRT (with a maximum of 10 iterations) with respect to several
well-known closed-form GLRTs. Concretely, we ran 104 trials for
the following GLRTs:

• The sphericity test (ST) proposed in [16].

• The Hadamard ratio test (HDM) proposed in [17].

• The sphericity test (BS) and the independence test (IN) for
Gaussian vectors proposed in [18].
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Table 1 lists the largest relative error of the iterative-GLRT in
approximating the values of the exact GLRTs, where p denotes the
size of the observations of the sphericity and Hadamard ratio tests,
q denotes the number of vectors of size m of the tests for Gaussian
vectors, and n is the number of observations. It can be observed that
the errors are negligible for all four cases, which implies that the
proposed iterative-GLRT converges to the exact value of the GLRT.

Detector Parameters Error
ST [p, n] = [9, 40] 8.88× 10−16

HDM [p, n] = [9, 40] 2.22× 10−16

BS [m, q, n] = [3, 3, 40] 1.11× 10−15

IN [m, q, n] = [3, 3, 40] 8.88× 10−16

Table 1. Largest relative error in 104 trials

5.2. Detection performance

Now we compare the performance of the iterative-GLRT with those
of the asymptotic-GLRT and LMPIT-inspired test of [12] in a multi-
channel detection problem of stationary temporally colored signals
contaminated by temporally white noise. More specifically, we con-
sider the following model

y(t) =

d∑
j=1

hjsj(t) + v(t),

where y(t) ∈ Ck are the observations, v(t) ∈ Ck is a tempo-
rally white noise with covariance matrix Σv , s(t) ∈ Cd is the
transmitted signal, which consists of d independent sources, and
H = [h1, . . . ,hd] ∈ Ck×d is the channel. The temporal corre-
lation of the sources is assumed to follow an exponential-decaying
model, namely,

[Σsj ]t,t′ = E[sj(t)s
∗
j (t
′)] = γ

(t−t′)
j ,

where γj is a different constant for each transmitted signal and
j = 1, . . . , d. To apply the aforementioned tests, we need to stack q
samples of y(t) to form the observation x(t) = [yT (tq),yT (tq +
1), . . . ,yT ((t+1)q−1)]T .1 Then, underH0, the covariance matrix
of x(t) is Σ0 = Iq ⊗Σv and

Σ1 = Iq ⊗Σv +

d∑
j=1

Σsj ⊗ hjh
H
j

underH1. Hence, underH0 the covariance matrix is block-spherical
with block size k, whereas it is block-Toeplitz with block size k
underH1.

In Fig. 1, we plot the receiving operating characteristic (ROC)
curves in an experiment with d = 2 sources whose SNRs are
[−8,−9] dB and [γ1, γ2] = [0.9, 0.7eıπ/4]. The dimensional pa-
rameters k and q are set as k = 2 and q = 3, respectively, and
a total of n = 100 snapshots are collected. The empirical result-
s, as depicted in Fig. 1, show that the iterative-GLRT outperforms
the asymptotic-GLRT and LMPIT-inspired test. This is because the
detectors from [12] are derived under the assumption that q → ∞,
which is far from true in this experiment.

1The observations x(t) will be temporally correlated, but this correlation
is ignored for the considered tests.
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Fig. 1. ROC curves for an experiment with k = 2, q = 3, n = 100
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Fig. 2. Accuracy of distributions under the null and the alternative
for k = 2, q = 3, n = 200 and snr = [−8,−9] dB

5.3. Theoretical Distribution

Since block-spherical matrices are a special case of block-Toeplitz
ones, the asymptotic analytical formulae derived in Section 3.2 are
applicable. Thus, in this section we check their accuracy. To do so,
we consider an experiment with n = 200 observations, while the re-
maining parameters are those of Fig. 1. The cumulative distribution
functions (CDF) are compared to those obtained with Monte Carlo
simulations in Fig. 2, where we can observe a very good agreement
between the theoretical and experimental results.

6. CONCLUSION

In this paper, we have proposed a general test for the covariance
structure of Gaussian populations, which can be applied as long as
the structured covariance matrices can be linearly represented by a
set of known matrices. The presented approach may be applied to
a wide range of detection problems. To solve the detection prob-
lem, we resort to the inverse iteration algorithm to seek the ML es-
timates of the structured covariance matrices, which are required for
the GLRT. Moreover, we have also derived the asymptotic distribu-
tions under both hypotheses. Looking forward, further studies on
the convergence and simplification of the inverse iteration algorithm
could prove beneficial.
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