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Abstract—In this work, we derive a two-channel passive
detector for cyclostationary (CS) signals contaminated by
noise with spatio-temporal structure. This problem is moti-
vated by a passive radar system equipped with a reference
and a surveillance antenna array. Since typical illumina-
tors of opportunity (IO) transmit CS signals, we derive
a generalized likelihood ratio test (GLRT) to detect the
presence of cyclostationarity at the surveillance channel (SC)
given observations of both SC and reference channel under
different noise assumptions. Simulation results show that
exploiting cyclostationarity on the one hand and the structure
of the noise on the other hand increases the performance
compared to the general case of temporally colored and
spatially correlated noise. Our approach also outperforms
other state-of-the-art competitors.

I. INTRODUCTION

In this paper, we consider a passive bistatic radar system
that consists of an illuminator of opportunity (IO), a
reference channel (RC), and a surveillance channel (SC).
These systems are of special interest as they are cheap,
simple and undetectable since the transmitter, which is
the IO, is not part of the passive radar system itself [1].
Commonly, IOs are commercial video or audio broadcast
systems or they could be space-based sources such as
communication or navigation satellites [1]. In this work we
consider a multiple-input multiple-output (MIMO) system
in which there are a reference antenna array that receives
a noisy version of the direct-path signal transmitted by the
IO, and a surveillance array. This array receives the target-
path signal if a target is present, or noise only, otherwise.
We assume that clutter or direct-path interference, which
may corrupt the signal received at the SC, is canceled
by employing the techniques presented in, e.g., [2]–[4].
Furthermore, the SC and RC signals are obtained by spatial
filtering [2], [5] or by employing directional antennas [6].

Commonly, this target detection problem is approached
by cross-correlating SC and RC signals [1], [7], [8],
which is, however, suboptimal due to noise at the RC [9].
Moreover, in the past, various generalized likelihood ratio
tests (GLRT) have been derived for the case of unknown
deterministic waveforms in temporally and spatially white
noise [10], [11]. Also, GLRTs considering the case of

stochastic waveforms in white noise with various assump-
tions on the spatial correlation among each array and
across reference and surveillance array have been derived
in [12]–[15].

These aforementioned detectors assume that the signals
are temporally white. However, digital communication
signals transmitted by IOs are not temporally white but
cyclostationary (CS) [1], [16]. In our previous work [17],
we derived the GLRT for the general case of spatially
correlated and temporally colored noise. Spatial corre-
lation refers to the correlation at the individual arrays
but not across reference and surveillance arrays. When
the noise has further structure, it should be exploited
in the detector design. Specifically, if the antenna arrays
are properly calibrated, the noise at each antenna can be
considered temporally white and spatially uncorrelated.
However, if the calibration fails, this assumptions may
be violated. Hence, in this work, we consider noise with
further structure: temporally white noise, which can be
either spatially correlated or not, and temporally colored
noise that is spatially uncorrelated.

We derive the GLRTs for these noise models and show
that for all cases the GLRT can be factorized into the
single channel GLRT [18], [19], which accounts for the
presence of cyclostationarity at the SC, and a second term
that accounts for the cross-cyclic correlations between
observations at SC and RC. We show that exploiting
cyclostationarity and, additionally, the structure of the
noise increases the performance of the previously proposed
detector for the general case of temporally colored and
spatially correlated noise [17]. For the case that the noise
structure is not known a priori, we may apply the tests
proposed in [19] to specify the noise structure.

II. PROBLEM FORMULATION

We consider a passive bistatic radar system, which
consists of a reference array and a surveillance array. The
received signal at the SC is denoted by us[n] ∈ CL and the
received signal at the RC is given by ur[n] ∈ CL, where
we assumed without loss of generality that there are L
antennas at both arrays. Furthermore, in our signal model
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we consider the true pair of time-delay and Doppler shift,
which allows us to synchronize the target-path signal with
the direct-path signal. Hence, the test statistic derived in
this paper serves as an ambiguity score [14]. The problem
considered in this paper is therefore given by the two
hypotheses

H0 :

{
us[n] = vs[n],

ur[n] = Hr[n] ∗ s[n] + vr[n],

H1 :

{
us[n] = Hs[n] ∗ s[n] + vs[n],

ur[n] = Hr[n] ∗ s[n] + vr[n],

(1)

where Hs[n] ∈ CL×LI and Hr[n] ∈ CL×LI represent the
frequency-selective channels between the IO and reference
and surveillance arrays. The signal transmitted by the IO,
which is equipped with LI antennas, where LI ≥ L,
is denoted by s[n] ∈ CLI . Moreover, s[n] is considered
to be a discrete-time zero-mean second-order CS signal
with known cycle period P . Finally, vs[n] ∈ CL and
vr[n] ∈ CL are additive noise terms that are wide-sense
stationary (WSS) and uncorrelated between RC and SC.
However, within each array the noise may have further
structure, which is either 1) temporally white & spatially
uncorrelated, 2) temporally white & spatially correlated,
or 3) temporally colored & spatially uncorrelated. In order
to derive the GLRT we follow our work in [17] in which
we have considered the case of temporally colored and
spatially correlated noise.

Let us collect NP samples of each array into the vectors

y♣ =
[
uT

♣ [0], . . . ,uT
♣ [NP − 1]

]T
, (2)

for ♣ ∈ {s, r}. Before deriving the GLRT we will first
investigate the structures of the (cross) covariance matrices
R♣♥ = E[y♣y

H
♥ ] ∈ CLNP×LNP . Under both hypotheses

the covariance matrix Rrr has the same structure. Consid-
ering that the signal ur[n] is CS with cycle period P , we
exploit a result from [20] that shows that the stack of P
observations of a CS process is WSS, i.e. the covariance
matrix Rrr is a block-Toeplitz matrix with block size LP .
Following the same argument it is easy to see that under
H1 the matrices R

(1)
ss and Rsr = RH

rs are also block-
Toeplitz matrices with block size LP .1

Considering the null hypothesis, we should first notice
that the observations from SC and RC are uncorrelated
since vs[n] and vr[n] are assumed to be uncorrelated.
Secondly, the structure of R

(0)
ss depends on the specific

noise model under consideration [21]. Specifically, it is
given by

1) R
(0)
ss = INP ⊗DL, where DL ∈ DL and DL denotes

the set of diagonal covariance matrices of dimension
L,

1Note that the superscripts (0) and (1) emphasize that it is the
covariance matrix obtained under the null hypothesis or the alternative,
respectively.

2) R
(0)
ss = INP ⊗AL, where AL ∈ AL and AL denotes

the set of positive semidefinite matrices of dimension
L,

3) R
(0)
ss is block-Toeplitz with block size L and each

block is diagonal.
Now we stack ys and yr into one long vector

y =
[
yT
s ,y

T
r

]T
. (3)

Assuming y to be zero-mean proper complex Gaussian we
can reformulate (1) as

H0 : y ∼ CN 2LNP (0,R0),
H1 : y ∼ CN 2LNP (0,R1),

(4)

with

R0 = E
[
yyH |H0

]
=

[
R

(0)
ss 0
0 Rrr

]
, (5)

and

R1 = E
[
yyH |H1

]
=

[
R

(1)
ss Rsr

Rrs Rrr

]
. (6)

In order to derive the GLRT it would be necessary to
obtain the maximum likelihood estimates (MLE) of R0

and R1. However, this would involve finding the MLE of
a block-Toeplitz matrix for which there exists no closed-
form solutions [22]. For this reason we make use of
the approximation proposed in [18], where it is shown
that the log-likelihood parameterized by a block-Toeplitz
covariance matrix converge asymptotically (N → ∞)
to the log-likelihood parameterized by a block-circulant
covariance matrix. Moreover, we exploit that a block-
circulant covariance matrix can be block-diagonalized by
the DFT matrix and a block-diagonal covariance matrix in
turn has a closed-form MLE.

III. DERIVATION OF THE GLRT

In order to derive a closed-form expression for the
(asymptotic) GLRT, we follow the approach in [18] and
transform the samples from both arrays into the frequency
domain as follows

z♣ = (LNP,N ⊗ IL)(FNP ⊗ IL)Hy♣ ∈ CLNP , (7)

where ⊗ denotes the Kronecker product, LNP,N is the
commutation matrix,2 and FNP is the DFT matrix of size
NP . Similar to the time domain we stack zs and zr into
a vector

z = [zTs , z
T
r ]T , (8)

to reformulate the hypotheses (4) as

H0 : z ∼ CN 2LNP (0,S0),
H1 : z ∼ CN 2LNP (0,S1).

(9)

Given M ≥ LP independent and identically distributed
(i.i.d.) realizations of z, the GLR is given by the ratio of

2The commutation matrix fulfills the following equation: vec (A) =
LMN,N vec

(
AT

)
for an M ×N matrix A.
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the determinants of the MLEs of the covariance matrices
[14]

Λ
1
M =

p(z0, · · · , zM−1; Ŝ0)

p(z0, · · · , zM−1; Ŝ1)
=

det
(
Ŝ1

)
det
(
Ŝ0

) , (10)

where Ŝ0 and Ŝ1 denote the MLEs of S0 and S1, respec-
tively.

Similarly to the time-domain covariance matrices R0

and R1, we partition the frequency-domain covariance
matrices into blocks as follows

S0 =

[
S
(1)
ss 0
0 Srr

]
, (11)

and

S1 =

[
S
(1)
ss Ssr

Srs Srr

]
, (12)

where each block is given by the (cross) covariance matrix
of zs and zr, respectively. The permutation and trans-
formation in (7) is designed such that the corresponding
(cross) covariance matrices all have a block-diagonal struc-
ture. Specifically, S

(1)
ss , Ssr, and Srr are block-diagonal

with block size LP , and depending on the noise model
S
(0)
ss is given by [21]
1) S

(0)
ss = INP ⊗ D̃L, where D̃L ∈ DL,

2) S
(0)
ss = INP ⊗ ÃL, where ÃL ∈ AL,

3) S
(0)
ss is diagonal.

A. MLEs of S0 and S1

Given the sample covariance matrix of M i.i.d. samples
of z,

Q =
1

M

M−1∑
m=0

zmzHm =

[
Qss Qsr

Qrs Qrr

]
, (13)

the MLE of S0 may be easily obtained by considering its
block-diagonal structure, i.e.

Ŝ0 =

[
Ŝ
(0)
ss 0
0 diagLP (Qrr)

]
, (14)

where the noise structure-dependent MLEs, Ŝ
(0)
ss , were

derived in [21] and are given by

1) Ŝ
(0)
ss = INP ⊗

(
1

NP

∑NP
i=1 diag ([Qss]i)

)
,

2) Ŝ
(0)
ss = INP ⊗

(
1

NP

∑NP
i=1 [Qss]i

)
,

3) Ŝ
(0)
ss = diag (Qss),

where [Qss]i denotes the ith block of dimension L on the
main diagonal of Qss. The structure of S1 is given by a
2 × 2 block matrix, where each block itself is a block-
diagonal matrix. Deriving the MLE of this matrix may
seem to be more involved. However, it can be observed
that it is always possible to permute the blocks in S1 such
that another block-diagonal matrix with block size 2LP
can be obtained. The MLE of this permuted matrix is
again given by the block-diagonal matrix obtained from

the corresponding blocks of the sample covariance matrix
[17]. After applying the inverse permutation to the MLE,
we end up with

Ŝ1 =

[
diagLP (Qss) diagLP (Qsr)
diagLP (Qrs) diagLP (Qrr)

]
. (15)

B. GLRT

Finally, we can plug in (14) and (15) into (10) to obtain

Λ
1
M = det (D) det

(
I−CCH

)
, (16)

where D =
(
Ŝ
(0)
ss

)−1/2
diagLP (Qss)

(
Ŝ
(0)
ss

)−1/2
and

C = diagLP (Qss)
−1/2

diagLP (Qsr) diagLP (Qrr)
−1/2,

and where we exploited the properties of the determinant
of block matrices. Note that only the first term in (16)
depends on the noise structure through Ŝ

(0)
ss . Furthermore,

we observe that D is a coherence matrix that only de-
pends on the correlations between observations at the SC,
whereas C is a cross-coherence matrix that depends on
the cross-correlations between SC and RC. After noticing
that both D and C are block-diagonal matrices with block
size LP , we may further simplify (16) as follows

Λ
1
M =

N∏
k=1

LP∏
l=1

λ
(l)
k

[
1−

(
κ
(l)
k

)2]
, (17)

where λ(l)k denotes the lth eigenvalue of the kth diagonal
block of D, which depends on the noise models 1)-3),
and κ(l)k denotes the lth eigenvalue of the kth block of C.
Finally, the GLRT is given by

Λ
1
M

H0

≷
H1

η, (18)

where η is selected to guarantee a given probability of
false alarm.

It should be noted that λ(l)k and κ
(l)
k can be given an

interpretation. Recall the linear transformation (7) that
transforms the samples into the frequency domain and
orders them such that every LP consecutive samples
are those frequency components that are separated by
multiples of the cycle frequency 2π/P [18]. These fre-
quencies may be correlated if the signal is CS, and they
are uncorrelated for a WSS process. It can be observed
that λ(l)k are the sample canonical correlations between
frequency components of the SC observations separated
by multiples of 2π/P . Moreover, considering the products
over these λ(l)k individually, this product is the GLRT for
detecting the presence of CS at a single channel (here the
SC) [18], [21]. Similarly, κ(l)k are the sample canonical
correlations between frequency components of SC and RC
observations.
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C. Threshold selection

In order to find the threshold for a given probability
of false alarm pfa, we exploit the invariances of the test
statistic. Note that we can multiply z with any matrix of
the structure of S0 without modifying the likelihood ratio,
i.e., it is invariant to these transformations. Hence, without
loss of generality, we can assume that the observations
under the null hypothesis are whitened. Thus, to find the
threshold for any arbitrary process, we can run numerical
simulations with temporally and spatially white processes.

IV. NUMERICAL RESULTS

We evaluate the performance of the GLRT for the
different noise models using Monte Carlo simulations.3

According to our model in (1), we generate the CS signal
s[n] as a QPSK-signal with rectangular pulse shaping. The
number of samples per symbol is equal to the cycle period
P . Furthermore, the frequency-selective channels Hs[n]
and Hr[n] are both Rayleigh-fading channels with a delay
spread of 10 times the symbol duration and an exponential
power delay profile. The SNR at the surveillance array is
set to SNRs = −10 dB and at the reference array it is set to
SNRs = −5 dB. In each Monte Carlo simulation we draw
new realizations of the channels. We consider simulation
setups with the noise structures in Model 1) and Model 3),
i.e., temporally white or colored, and spatially uncorrelated
noise. Here, the noise terms are independent between SC
and RC, white Gaussian, or colored Gaussian generated
with a moving average filter of order 10 and uncorrelated
among antennas. Moreover, in the figures presented in this
section, 1) refers to the detector exploiting noise structure
from Model 1, 2) and 3) refer to the detectors that exploits
only temporal or spatial structure of the noise, respectively.

In Figure 1 we compare the receiver operating character-
istic (ROC) curves of the three proposed detectors 1) - 3),
which exploit various degrees of noise structure. Detector
2) only considers temporal structure, Detector 3) only
considers spatial structure, whereas Detector 1) takes into
account both. Since the noise in our example is temporally
and spatially white, Detector 1) outperforms Detectors 2)
and 3), but taking into account temporal structure is more
advantageous. Moreover, all detectors outperform compet-
ing approaches, namely, the GLRT from [17] that does not
exploit the noise structure, the correlated subspace detector
proposed in [14], and the cross-correlation detector [9].

Similar observations can be made in Figure 2, where we
compare the ROCs of the various detectors for simulations
under noise Model 3. As can be observed, Detector
3), which matches the model, performs best among the
competing ones. Interestingly, applying the white noise de-
tectors 1) and 2) decreases the performance substantially.
The reason for this is that Detectors 1) and 2) underfit
noise model 3), which has many more degrees of freedom

3Matlab code is available for download from:
https://github.com/SSTGroup/Cyclostationary-Signal-Processing
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Fig. 1: ROC for a scenario with temporally white and spatially
uncorrelated noise (Model 1) for P = 2, N = 16, L = LI = 4,
M = 32, SNRs = −10 dB, and SNRr = −5 dB.
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Fig. 2: ROC for a scenario with temporally colored and spatially
uncorrelated noise (Model 3) for P = 2, N = 16, L = LI = 4,
M = 32, SNRs = −10 dB, and SNRr = −5 dB.

as captured by 1) and 2). Hence, in general accounting for
the temporal structure is essential. Note that the influence
of the spatial structure is not as large as the related degrees
of freedom depend on L, whereas the number of free
parameters of the model corresponding to the temporal
structure depend on N , which is generally much larger.
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